Systematic corrections of AVHRR image composites for temporal studies

被引:50
作者
Cihlar, J
Latifovic, R
Chen, J
Trishchenko, A
Du, Y
Fedosejevs, G
Guindon, B
机构
[1] Canada Ctr Remote Sensing, Ottawa, ON K1A 0Y7, Canada
[2] Univ Toronto, Dept Geog, Toronto, ON M5S 1A1, Canada
关键词
AVHRR; pixel reflectance; algorithm;
D O I
10.1016/j.rse.2002.06.007
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
For quantitative studies of vegetation dynamics, satellite data need to be corrected for spurious effects. In this study, we have applied several changes to an earlier advanced very high resolution radiometer (AVHRR) processing methodology (ABC3; [Remote Sens. Environ. 60 (1997) 35; J. Geophys. Res.-Atmos. 102 (1997) 29625; Can. J. Remote Sens. 23 (1997) 163]), to better represent the various physical processes causing contamination of the AVHRR measurements. These included published recent estimates of the NOAA-11 and NOAA-14 AVHRR calibration trajectories for channels I and 2; the best available estimates for the water vapour, aerosol and ozone amounts at the time of AVHRR data acquisition; an improved bidirectional reflectance algorithm that also takes into consideration surface topography; and an improved image screening algorithm for contaminated pixels. Unlike the previous study that compared the composite images to a single-date AVHRR image, we employed coincident TM images to approximate the AVHRR pixel field of view during the data acquisition. Compared to ABC3, the modified procedure ABC3V2 was found to improve the accuracy of AVHRR pixel reflectance estimates, both in the sensitivity (slope) of the regression and in r(2). The improvements were especially significant in AVHRR channel 1. In comparison with reference values derived from two full TM scenes, the corrected AVHRR surface reflectance estimates had average standard errors values of +/- 0.009 for AVHRR C1, +/- 0.019 for C2, and +/- 0.04 for NDVI; the corresponding r(2) values were 0.55, 0.80, and 0.50, respectively. The changes in ABC3V2 were not able to completely remove interannual variability for land cover types with little or no vegetation cover, which would be expected to remain stable over time, and they increased the interannual variability of mixed forest and grassland. These results are attributed to a combination of increased sensitivity to interannual dynamics on one hand, and the inability to remove all sources of noise for barren or sparsely vegetated northern land cover types on the other. (C) 2003 Published by Elsevier Inc.
引用
收藏
页码:217 / 233
页数:17
相关论文
共 56 条
[1]   An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale [J].
Barbosa, PM ;
Grégoire, JM ;
Pereira, JMC .
REMOTE SENSING OF ENVIRONMENT, 1999, 69 (03) :253-263
[2]   Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 [J].
Barnes, WL ;
Pagano, TS ;
Salomonson, VV .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (04) :1088-1100
[3]   Annual carbon balance of Canada's forests during 1895-1996 [J].
Chen, J ;
Chen, WJ ;
Liu, J ;
Cihlar, J ;
Gray, S .
GLOBAL BIOGEOCHEMICAL CYCLES, 2000, 14 (03) :839-849
[4]   A four-scale bidirectional reflectance model based on canopy architecture [J].
Chen, JM ;
Leblanc, SG .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1997, 35 (05) :1316-1337
[5]   A hotspot function in a simple bidirectional reflectance model for satellite applications [J].
Chen, JM ;
Cihlar, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D22) :25907-25913
[6]  
CHEN JM, 2000, IN PRESS INT J REMOT
[7]  
Chen W., 2000, Mitigation and Adaptation Strategies for Global Change, V5, P143, DOI [10.1023/A:1009671422344, DOI 10.1023/A:1009671422344]
[8]   Seasonal AVHRR multichannel data sets and products for studies of surface-atmosphere interactions [J].
Cihlar, J ;
Chen, J ;
Li, Z .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D24) :29625-29640
[9]   Can interannual land surface signal be discerned in composite AVHRR data? [J].
Cihlar, J ;
Chen, JM ;
Li, Z ;
Huang, F ;
Latifovic, R ;
Dixon, R .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D18) :23163-23172
[10]   Multitemporal, multichannel AVHRR data sets for land biosphere studies - Artifacts and corrections [J].
Cihlar, J ;
Ly, H ;
Li, ZQ ;
Chen, J ;
Pokrant, H ;
Huang, FT .
REMOTE SENSING OF ENVIRONMENT, 1997, 60 (01) :35-57