Strong-weak coupling duality in anisotropic current interactions

被引:25
作者
Bernard, D [1 ]
LeClair, A
机构
[1] CEA, Lab Direct Sci Mat, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[2] Cornell Univ, Newman Lab, Ithaca, NY 14853 USA
[3] CNRS, LPTHE, Lab Associe 280, Paris, France
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0370-2693(01)00695-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The recently proposed all orders beta function for current interactions in two dimensions is further investigated. By using a strong-weak coupling duality of the beta function, and some added topology of the space of couplings we are able to extend the Bows to arbitrarily large or small scales. Using a nontrivial RG invariant we are able to identify sine-Gordon, sinh-Gordon and Kosterlitz-Thouless phases. We also find an additional phase with cyclic or roaming RG trajectories. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:78 / 84
页数:7
相关论文
共 12 条
[1]   Renormalization of the three-body system with short-range interactions [J].
Bedaque, PF ;
Hammer, HW ;
van Kolck, U .
PHYSICAL REVIEW LETTERS, 1999, 82 (03) :463-467
[2]   THE FRACTIONAL SUPERSYMMETRIC SINE-GORDON MODELS [J].
BERNARD, D ;
LECLAIR, A .
PHYSICS LETTERS B, 1990, 247 (2-3) :309-316
[3]   MASSLESS FLOWS .1. THE SINE-GORDON AND O(N) MODELS [J].
FENDLEY, P ;
SALEUR, H ;
ZAMOLODCHIKOV, AB .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (32) :5717-5750
[4]   MASSLESS FLOWS .2. THE EXACT S-MATRIX APPROACH [J].
FENDLEY, P ;
SALEUR, H ;
ZAMOLODCHIKOV, AB .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (32) :5751-5778
[5]  
GERGANOV B, HEPTH0011189
[6]  
KNIZHNIK VG, 1984, NUCL PHYS B, V247, P83, DOI 10.1016/0550-3213(84)90374-2
[7]  
KONIK R, CONDMAT0009166
[8]  
LECLAIR A, IN PRESS PHYS REV B
[9]  
Lukyanov S.L., UNPUB
[10]  
NIENHUIS B, 1984, J STAT PHYS, V34, P153