Structure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophage T7

被引:82
作者
Hollis, T [1 ]
Stattel, JM [1 ]
Walther, DS [1 ]
Richardson, CC [1 ]
Ellenberger, T [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1073/pnas.171317698
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The gene 2.5 protein (gp2.5) of bacteriophage T7 is a single-stranded DNA (ssDNA) binding protein that has essential roles in DNA replication and recombination. In addition to binding DNA, gp2.5 physically interacts with T7 DNA polymerase and T7 primase-helicase during replication to coordinate events at the replication fork. We have determined a 1.9-Angstrom crystal structure of gp2.5 and show that it has a conserved OB-fold (oligosaccharide/oligonucleoticle binding fold) that is well adapted for interactions with ssDNA. Superposition of the OB-folds of gp2.5 and other ssDNA binding proteins reveals a conserved patch of aromatic residues that stack against the bases of ssDNA in the other crystal structures, suggesting that gp2.5 binds to ssDNA in a similar manner. An acidic C-terminal extension of the gp2.5 protein, which is required for dimer formation and for interactions with the T7 DNA polymerase and the primase-helicase, appears to be flexible and may act as a switch that modulates the DNA binding affinity of gp2.5.
引用
收藏
页码:9557 / 9562
页数:6
相关论文
共 45 条
[1]   Methods used in the structure determination of bovine mitochondrial F-1 ATPase [J].
Abrahams, JP ;
Leslie, AGW .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1996, 52 :30-42
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]   3D DOMAIN SWAPPING - A MECHANISM FOR OLIGOMER ASSEMBLY [J].
BENNETT, MJ ;
SCHLUNEGGER, MP ;
EISENBERG, D .
PROTEIN SCIENCE, 1995, 4 (12) :2455-2468
[4]   Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA [J].
Bochkarev, A ;
Pfuetzner, RA ;
Edwards, AM ;
Frappier, L .
NATURE, 1997, 385 (6612) :176-181
[5]   The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding [J].
Bochkarev, A ;
Bochkareva, E ;
Frappier, L ;
Edwards, AM .
EMBO JOURNAL, 1999, 18 (16) :4498-4504
[6]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[7]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[8]   ESCHERICHIA-COLI SINGLE-STRAND BINDING-PROTEIN FORMS MULTIPLE, DISTINCT COMPLEXES WITH SINGLE-STRANDED-DNA [J].
BUJALOWSKI, W ;
LOHMAN, TM .
BIOCHEMISTRY, 1986, 25 (24) :7799-7802
[9]  
CHASE JW, 1986, ANNU REV BIOCHEM, V55, P103, DOI 10.1146/annurev.bi.55.070186.000535
[10]   VERIFICATION OF PROTEIN STRUCTURES - PATTERNS OF NONBONDED ATOMIC INTERACTIONS [J].
COLOVOS, C ;
YEATES, TO .
PROTEIN SCIENCE, 1993, 2 (09) :1511-1519