4E-binding protein phosphorylation and eukaryotic initiation factor-4E release are required for airway smooth muscle hypertrophy

被引:41
作者
Zhou, LM
Goldsmith, AM
Bentley, JK
Jia, Y
Rodriguez, ML
Abe, MK
Fingar, DC
Hershenson, MB
机构
[1] Univ Michigan, Dept Cell & Dev Biol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Med, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Pediat & Communicable Dis, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Mol & Integrat Physiol, Ann Arbor, MI 48109 USA
[5] Univ Chicago, Dept Pediat, Chicago, IL 60637 USA
关键词
translation; protein synthesis; phosphatidylinositol; 3-kinase; mammalian target of rapamycin;
D O I
10.1165/rcmb.2004-0411OC
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular mechanisms of airway smooth muscle hypertrophy, a feature of severe asthma, are poorly understood. We previously established a conditionally immortalized human bronchial smooth muscle cell line with a temperature-sensitive SV40 large T antigen. Temperature shift and loss of large T cause G1-phase cell cycle arrest that is accompanied by increased airway smooth muscle cell size. In the present study, we hypothesized that phosphorylation of eukaryotic initiation factor-4E (eIF4E)-binding protein (4E-BP), which subsequently releases eIF4E and initiates cap-dependent m RNA translation, was required for airway smooth muscle hypertrophy. Treatment of cells with chemical inhibitors of PI 3-kinase and mammalian target of rapamycin blocked protein synthesis and cell growth while decreasing the phosphorylation of 4E-BP and increasing the binding of 4E-BP to eIF4E, consistent with the notion that 4E-BP1 phosphorylation and eIF4E function are required for hypertrophy. To test this directly, we infected cells with a retrovirus encoding a phosphorylation site mutant of 4E-BP1 (AA-4E-BP-1) that dominantly inhibits eIF4E. Upon temperature shift, cells infected with AA-4E-BP-1, but not empty vector, failed to undergo hypertrophic growth. We conclude that phosphorylation of 4E-BP, eIF4E release, and cap-dependent protein synthesis are required for hypertrophy of human airway smooth muscle cells.
引用
收藏
页码:195 / 202
页数:8
相关论文
共 29 条
[1]   Airway structural alterations selectively associated with severe asthma [J].
Benayoun, L ;
Druilhe, A ;
Dombret, MC ;
Aubier, M ;
Pretolani, M .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2003, 167 (10) :1360-1368
[2]   Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation [J].
Beretta, L ;
Gingras, AC ;
Svitkin, YV ;
Hall, MN ;
Sonenberg, N .
EMBO JOURNAL, 1996, 15 (03) :658-664
[3]   Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin [J].
Brunn, GJ ;
Hudson, CC ;
Sekulic, A ;
Williams, JM ;
Hosoi, H ;
Houghton, PJ ;
Lawrence, JC ;
Abraham, RT .
SCIENCE, 1997, 277 (5322) :99-101
[4]   Physiological control of smooth muscle-specific gene expression through regulated nuclear translocation of serum response factor [J].
Camoretti-Mercado, B ;
Liu, HW ;
Halayko, AJ ;
Forsythe, SM ;
Kyle, JW ;
Li, B ;
Fu, YP ;
McConville, J ;
Kogut, P ;
Vieira, JE ;
Patel, NM ;
Hershenson, MB ;
Fuchs, E ;
Sinha, S ;
Miano, JM ;
Parmacek, MS ;
Burkhardt, JK ;
Solway, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (39) :30387-30393
[5]   THE STRUCTURE OF LARGE AND SMALL AIRWAYS IN NONFATAL AND FATAL ASTHMA [J].
CARROLL, N ;
ELLIOT, J ;
MORTON, A ;
JAMES, A .
AMERICAN REVIEW OF RESPIRATORY DISEASE, 1993, 147 (02) :405-410
[6]  
DUNHILL MS, 1971, THORAX, V24, P176
[7]   CELLULAR HYPERTROPHY AND HYPERPLASIA OF AIRWAY SMOOTH MUSCLES UNDERLYING BRONCHIAL-ASTHMA - A 3-D MORPHOMETRIC STUDY [J].
EBINA, M ;
TAKAHASHI, T ;
CHIBA, T ;
MOTOMIYA, M .
AMERICAN REVIEW OF RESPIRATORY DISEASE, 1993, 148 (03) :720-726
[8]   HYPERREACTIVE SITE IN THE AIRWAY TREE OF ASTHMATIC-PATIENTS REVEALED BY THICKENING OF BRONCHIAL MUSCLES - A MORPHOMETRIC STUDY [J].
EBINA, M ;
YAEGASHI, H ;
CHIBA, R ;
TAKAHASHI, T ;
MOTOMIYA, M ;
TANEMURA, M .
AMERICAN REVIEW OF RESPIRATORY DISEASE, 1990, 141 (05) :1327-1332
[9]   Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E [J].
Fingar, DC ;
Salama, S ;
Tsou, C ;
Harlow, E ;
Blenis, J .
GENES & DEVELOPMENT, 2002, 16 (12) :1472-1487
[10]   eIF4E binding protein 1 and H-Ras are novel substrates for the protein kinase activity of class-I phosphoinositide 3-kinase [J].
Foukas, LC ;
Shepherd, PR .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 319 (02) :541-549