Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs

被引:65
作者
Shi, Y [1 ]
Yang, DH [1 ]
Xiong, J [1 ]
Jia, H [1 ]
Huang, B [1 ]
Jin, YX [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell Biol, State Key Lab Mol Biol, Shanghai 200031, Peoples R China
关键词
SARS; small interfering RNA; Vero E6 cells; EGFP fusion protein; antiviral therapy;
D O I
10.1038/sj.cr.7290286
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
RNA interference (RNAi) is triggered by the presence of a double-stranded RNA (dsRNA), and results in the silencing of homologous gene expression through the specific degradation of an mRNA containing the same sequence. dsRNA-mediated RNAi can be used in a wide variety of eucaryotes to induce the sequence-specific inhibition of gene expression. Synthetic 21-23 nucleotide (nt) small interfering RNA (siRNA) with 2 nt 3' overhangs was recently found to mediate efficient sequence-specific mRNA degradation in mammalian cells. Here, we studied the effects of synthetic siRNA duplexes targeted to SARS coronavirus structural proteins E, M, and N in a cell culture system. Among total 26 siRNA duplexes, we obtained 3 siRNA duplexes which could sequence-specifically reduce target genes expression over 80% at the concentration of 60 nM in Vero E6 cells. The downregulation effect was in correlation with the concentrations of the siRNA duplexes in a range of 0 similar to 60 nM. Our results also showed that many inactive siRNA duplexes may be brought to life simply by unpairing the 5' end of the antisense strands. Results suggest that siRNA is capable of inhibiting SARS coronavirus genes expression and thus may be a new therapeutic strategy for treatment of SARS.
引用
收藏
页码:193 / 200
页数:8
相关论文
共 39 条
[1]   Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference [J].
Capodici, J ;
Karikó, K ;
Weissman, D .
JOURNAL OF IMMUNOLOGY, 2002, 169 (09) :5196-5201
[2]   Medicine - Silencing viruses with RNA [J].
Carmichael, GG .
NATURE, 2002, 418 (6896) :379-380
[3]   Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference [J].
Coburn, GA ;
Cullen, BR .
JOURNAL OF VIROLOGY, 2002, 76 (18) :9225-9231
[4]  
DICK T, 2003, UPDATE 31 CORONAVIRU
[5]   Identification of a novel coronavirus in patients with severe acute respiratory syndrome [J].
Drosten, C ;
Günther, S ;
Preiser, W ;
van der Werf, S ;
Brodt, HR ;
Becker, S ;
Rabenau, H ;
Panning, M ;
Kolesnikova, L ;
Fouchier, RAM ;
Berger, A ;
Burguière, AM ;
Cinatl, J ;
Eickmann, M ;
Escriou, N ;
Grywna, K ;
Kramme, S ;
Manuguerra, JC ;
Müller, S ;
Rickerts, V ;
Stürmer, M ;
Vieth, S ;
Klenk, HD ;
Osterhaus, ADME ;
Schmitz, H ;
Doerr, HW .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (20) :1967-1976
[6]   RNA interference is mediated by 21-and 22-nucleotide RNAs [J].
Elbashir, SM ;
Lendeckel, W ;
Tuschl, T .
GENES & DEVELOPMENT, 2001, 15 (02) :188-200
[7]   Analysis of gene function in somatic mammalian cells using small interfering RNAs [J].
Elbashir, SM ;
Harborth, J ;
Weber, K ;
Tuschl, T .
METHODS, 2002, 26 (02) :199-213
[8]   Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate [J].
Elbashir, SM ;
Martinez, J ;
Patkaniowska, A ;
Lendeckel, W ;
Tuschl, T .
EMBO JOURNAL, 2001, 20 (23) :6877-6888
[9]  
Fields B.N., 2001, FIELDS VIROLOGY, V4th
[10]   Effects of a SARS-associated coronavirus vaccine in monkeys [J].
Gao, WT ;
Tamin, A ;
Soloff, A ;
D'Aiuto, L ;
Nwanegbo, E ;
Robbins, PD ;
Bellini, WJ ;
Barratt-Boyes, S ;
Gambotto, A .
LANCET, 2003, 362 (9399) :1895-1896