Imaging of vortices in superconductors by electron beam scanning

被引:4
作者
Martin, J
Huebener, RP
le Grand, JB
Mears, CA
Labov, SE
Barfknecht, AT
机构
[1] Univ Tubingen, Lehrstuhl Expt Phys 2, Inst Phys, D-72076 Tubingen, Germany
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Conductus Inc, Sunnyvale, CA 94086 USA
关键词
D O I
10.1063/1.121840
中图分类号
O59 [应用物理学];
学科分类号
摘要
Abrikosov vortices trapped in a superconducting tunnel junction and oriented perpendicular to the barrier plane were imaged by electron beam scanning at 1.6 K, We have used NbAlOxNb junctions. As an important feature, the top Nb electrode was covered with a SiO2 film of 300 nm thickness, absorbing most of the 5 keV beam energy. The signal generating the image is explained by a model, assuming that the beam-induced electronic excitations in the SiO2 overlay film are trapped in the local magnetic field protruding from a vortex, resulting in an increased recombination rate. In addition to providing a novel approach to the imaging of the vortices in superconductors, our results are important for understanding quasiparticle losses in tunnel junction detectors. (C) 1998 American Institute of Physics.
引用
收藏
页码:378 / 380
页数:3
相关论文
共 12 条
[1]   Superconducting particle detectors [J].
Booth, NE ;
Goldie, DJ .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1996, 9 (07) :493-516
[2]   Energy resolution and high count rate performance of superconducting tunnel junction x-ray spectrometers [J].
Frank, M ;
Hiller, LJ ;
le Grand, JB ;
Mears, CA ;
Labov, SE ;
Lindeman, MA ;
Netel, H ;
Chow, D ;
Barfknecht, AT .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (01) :25-31
[3]   APPLICATIONS OF LOW-TEMPERATURE SCANNING ELECTRON-MICROSCOPY [J].
HUEBENER, RP .
REPORTS ON PROGRESS IN PHYSICS, 1984, 47 (02) :175-220
[4]  
HUEBENER RP, 1989, SUPERCONDUCTING QUAN, P205
[5]   Quasiparticle relaxation rates in Nb/AlOx/Nb tunnel junctions due to Abrikosov vortices [J].
leGrand, JB ;
Martin, J ;
Huebener, RP ;
Hamster, AW ;
Brons, GCS ;
Flokstra, J .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (11) :7413-7417
[6]   INVESTIGATION OF EPITAXIAL NIOBIUM BASED SUPERCONDUCTING TUNNEL JUNCTION DETECTORS [J].
LEMKE, S ;
HEBRANK, F ;
FOMINAYA, F ;
GROSS, R ;
HUEBENER, RP ;
RANDO, N ;
VANDORDRECHT, A ;
HUEBNER, P ;
VIDELER, P ;
PEACOCK, A .
PHYSICA B, 1994, 194 :1663-1664
[7]   Quasiparticle diffusion and loss processes in superconducting tunnel junctions [J].
Martin, J ;
Lemke, S ;
Gross, R ;
Huebener, RP ;
Videler, P ;
Rando, N ;
Peacock, T ;
Verhoeve, P ;
Jansen, FA .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1996, 370 (01) :88-90
[8]   High-resolution superconducting X-ray spectrometers with an active area of 282 mu m x 282 mu m [J].
Mears, CA ;
Labov, SE ;
Frank, M ;
Netel, H ;
Hiller, LJ ;
Lindeman, MA ;
Chow, D ;
Barfknecht, AT .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1997, 7 (02) :3415-3418
[9]  
OTT HR, 1995, NUC INSTRUM METHOD A, V370, P1
[10]   Single optical photon detection with a superconducting tunnel junction [J].
Peacock, A ;
Verhoeve, P ;
Rando, N ;
vanDordrecht, A ;
Taylor, BG ;
Erd, C ;
Perryman, MAC ;
Venn, R ;
Howlett, J ;
Goldie, DJ ;
Lumley, J ;
Wallis, M .
NATURE, 1996, 381 (6578) :135-137