The singularity-induced bifurcation and its Kronecker normal form

被引:52
作者
Beardmore, RE [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
关键词
unfoldings; bifurcation; matrix pencil;
D O I
10.1137/S089547989936457X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the singularity-induced bifurcation theorem due to Venkatasubramanian, Schattler, and Zaborszky [Proceedings of the IEEE, 83 ( 1995), pp. 1530-1558] can be expressed as the perturbation of an infinite eigenvalue of a particular class of parameterized index-1 matrix pencil, denoted ( M, L (lambda)). It is shown that the matrix pencil at the singularity-induced bifurcation point, ( M, L (lambda (0))), has Kronecker index-2. It is also shown that a two-parameter unfolding of a singularity-induced bifurcation point results in a locus of index-0 pencils, denoted ( M (epsilon), L(lambda(epsilon))), which has two purely imaginary eigenvalues near infinity.
引用
收藏
页码:126 / 137
页数:12
相关论文
共 18 条
[1]  
Arnold V. I., 1999, Bifurcation Theory and Catastrophe Theory
[2]   SINGULAR HOPF-BIFURCATION TO RELAXATION OSCILLATIONS .2. [J].
BAER, SM ;
ERNEUX, T .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (06) :1651-1664
[3]   Stability and bifurcation properties of index-1 DAEs [J].
Beardmore, RE .
NUMERICAL ALGORITHMS, 1998, 19 (1-4) :43-53
[4]  
BEARDMORE RE, UNPUB SIAM J MATRIX
[5]  
BENOIT E, 1983, ASTERISQUE, P159
[6]  
BERNAN KE, 1989, NUMERICAL SOLUTION I
[7]   Mixed symbolic-numerical computations with general DAEs - I: System properties [J].
Campbell, SL ;
Hollenbeck, R ;
Yeomans, K ;
Zhong, Y .
NUMERICAL ALGORITHMS, 1998, 19 (1-4) :73-83
[8]  
Dumortier F, 1996, MEM AM MATH SOC, V121, P1
[9]  
Gantmacher F.R., 1977, The Theory of Matrices
[10]  
Golub G. H., 2013, Matrix Computations