Apoptosis, cell volume regulation and volume-regulatory chloride channels

被引:165
作者
Okada, Y [1 ]
Maeno, E
机构
[1] Natl Inst Physiol Sci, Dept Cell Physiol, Okazaki, Aichi 4448585, Japan
[2] Japan Sci & Technol Corp, CREST, Okazaki, Aichi 4448585, Japan
来源
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR AND INTEGRATIVE PHYSIOLOGY | 2001年 / 130卷 / 03期
关键词
apoptosis; cell death; apoptotic volume decrease; regulatory volume decrease; regulatory volume increase; cell volume regulation; Cl channel; K channel;
D O I
10.1016/S1095-6433(01)00424-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Apoptosis occurs in response to various stimuli under physiological and pathological circumstances. A major hallmark of the programmed cell death is normotonic shrinkage of cells. Induction of the apoptotic volume decrease (AVD) was found to precede cytochrome c release, caspase-3 activation and DNA laddering. A broad-spectrum caspase inhibitor blocked these biochemical apoptotic events but failed to block the AVD. The normotonic AVD induction was coupled to facilitation of the regulatory volume decrease (RVD), which is attained by parallel operation of Cl- and K+ channels, under hypotonic conditions. Both the AVD induction and RVD facilitation were prevented by application of a blocker of volume-regulatory Cl- or K+ channels. Furthermore, apoptotic cell death was rescued by channel blocker-induced prevention of AVD. Thus, it is concluded that the AVD is produced under normotonic conditions by a mechanism similar, though without preceding swelling, to RVD and represents an early prerequisite to apoptotic events leading to cell death. It was previously reported that hypertonic stress triggers apoptosis in cell types that lack the regulatory volume increase (RVI) mechanism. Taken together, it is suggested that 'disordered' or altered cell volume regulation is associated with apoptosis. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:377 / 383
页数:7
相关论文
共 43 条
[1]   INTRACELLULAR IONIC VARIATIONS IN THE APOPTOTIC DEATH OF L-CELLS BY INHIBITORS OF CELL-CYCLE PROGRESSION [J].
BARBIERO, G ;
DURANTI, F ;
BONELLI, G ;
AMENTA, JS ;
BACCINO, FM .
EXPERIMENTAL CELL RESEARCH, 1995, 217 (02) :410-418
[2]   HUMAN EOSINOPHILS IN CULTURE UNDERGO A STRIKING AND RAPID SHRINKAGE DURING APOPTOSIS - ROLE OF K+ CHANNELS [J].
BEAUVAIS, F ;
MICHEL, L ;
DUBERTRET, L .
JOURNAL OF LEUKOCYTE BIOLOGY, 1995, 57 (06) :851-855
[3]   Characterization of cell volume loss in CEM-C7A cells during dexamethasone-induced apoptosis [J].
Benson, RSP ;
Heer, S ;
Dive, C ;
Watson, AJM .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1996, 270 (04) :C1190-C1203
[4]   Caspase independent/dependent regulation of K+, cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis [J].
Bortner, CD ;
Cidlowski, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (31) :21953-21962
[5]   Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes [J].
Bortner, CD ;
Cidlowski, JA .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1996, 271 (03) :C950-C961
[6]   A primary role for K+ and Na+ efflux in the activation of apoptosis [J].
Bortner, CD ;
Hughes, FM ;
Cidlowski, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32436-32442
[7]   Biochemical pathways of caspase activation during apoptosis [J].
Budihardjo, I ;
Oliver, H ;
Lutter, M ;
Luo, X ;
Wang, XD .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :269-290
[8]   How to lose your hippocampus by working on chloride channels [J].
Clapham, D .
NEURON, 2001, 29 (01) :1-3
[9]  
Colom LV, 1998, J NEUROCHEM, V70, P1925
[10]  
CREPEL V, 1998, J NEUROSCI, V15, P1026