The semismooth algorithm for large scale complementarity problems

被引:45
作者
Munson, TS
Facchinei, F
Ferris, MC
Fischer, A
Kanzow, C
机构
[1] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
[2] Univ Roma La Sapienza, Dipartimento Informat & Sistemist, I-00185 Rome, Italy
[3] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
[4] Univ Dortmund, Fachbereich Math, Inst Angew Math, D-44221 Dortmund, Germany
[5] Univ Hamburg, Fachbereich Math, Schwerpunkt Optimierung & Approximat, D-20146 Hamburg, Germany
关键词
complementarity; large scale systems; nonsmooth analysis; iterative linear solvers;
D O I
10.1287/ijoc.13.4.294.9734
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Complementarity solvers are continually being challenged by modelers demanding improved reliability and scalability. Building upon a strong theoretical background, the semismooth algorithm has the potential to meet both of these requirements. We discuss relevant theory associated with the algorithm and then describe a sophisticated implementation in detail. Particular emphasis is given to the use of preconditioned iterative methods to solve the (nonsymmetric) systems of linear equations generated at each iteration and robust methods for dealing with singularity. Results on the MCPLIB test suite indicate that the code is reliable and efficient and scales well to very large problems.
引用
收藏
页码:294 / 311
页数:18
相关论文
共 41 条
[1]  
[Anonymous], 1997, SIAM J CONTROL OPTIM
[2]  
[Anonymous], THESIS U WISCONSIN M
[3]  
[Anonymous], 1983, 8320 SOL STANF U
[4]  
[Anonymous], 2000, US GUID
[5]  
Brooke A., 1988, GAMS USERS GUIDE
[6]   A penalized Fischer-Burmeister NCP-function [J].
Chen, BT ;
Chen, XJ ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 2000, 88 (01) :211-216
[7]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[8]   A theoretical and numerical comparison of some semismooth algorithms for complementarity problems [J].
De Luca, T ;
Facchinei, F ;
Kanzow, C .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 16 (02) :173-205
[9]   A semismooth equation approach to the solution of nonlinear complementarity problems [J].
DeLuca, T ;
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1996, 75 (03) :407-439
[10]  
Dirkse S.P., 1995, Optimization Methods and Software, V5, P319, DOI DOI 10.1080/10556789508805619