Environmental Regulation of Lateral Root Emergence in Medicago truncatula Requires the HD-Zip I Transcription Factor HB1

被引:143
作者
Ariel, Federico [2 ]
Diet, Anouck [1 ,3 ]
Verdenaud, Marion [4 ]
Gruber, Veronique [1 ,3 ]
Frugier, Florian [1 ]
Chan, Raquel [2 ]
Crespi, Martin [1 ]
机构
[1] CNRS, Inst Sci Vegetal, F-91198 Gif Sur Yvette, France
[2] Univ Nacl Litoral, Consejo Nacl Invest Cient & Tecn, Inst Agrobiotecnol Litoral, RA-3000 Santa Fe, Argentina
[3] Univ Paris 07, F-75205 Paris 13, France
[4] INRA, CNRS, Lab Interact Plantes Microorganismes, F-31326 Castanet Tolosan, France
关键词
ABSCISIC-ACID; ARABIDOPSIS-THALIANA; EXPRESSION PATTERNS; PLANT DEVELOPMENT; WATER-DEFICIT; SALT STRESS; GENE FAMILY; PROTEINS; NODULE; GROWTH;
D O I
10.1105/tpc.110.074823
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The adaptation of root architecture to environmental constraints is a major agricultural trait, notably in legumes, the third main crop worldwide. This root developmental plasticity depends on the formation of lateral roots (LRs) emerging from primary roots. In the model legume Medicago truncatula, the HD-Zip I transcription factor HB1 is expressed in primary and lateral root meristems and induced by salt stress. Constitutive expression of HB1 in M. truncatula roots alters their architecture, whereas hb1 TILLING mutants showed increased lateral root emergence. Electrophoretic mobility shift assay, promoter mutagenesis, and chromatin immunoprecipitation-PCR assays revealed that HB1 directly recognizes a CAA-TAATTG cis-element present in the promoter of a LOB-like (for Lateral Organ Boundaries) gene, LBD1, transcriptionally regulated by auxin. Expression of these genes in response to abscisic acid and auxin and their behavior in hb1 mutants revealed an HB1-mediated repression of LBD1 acting during LR emergence. M. truncatula HB1 regulates an adaptive developmental response to minimize the root surface exposed to adverse environmental stresses.
引用
收藏
页码:2171 / 2183
页数:13
相关论文
共 60 条
[1]   ProtTest: selection of best-fit models of protein evolution [J].
Abascal, F ;
Zardoya, R ;
Posada, D .
BIOINFORMATICS, 2005, 21 (09) :2104-2105
[2]   The true story of the HD-Zip family [J].
Ariel, Federico D. ;
Manavella, Pablo A. ;
Dezar, Carlos A. ;
Chan, Raquel L. .
TRENDS IN PLANT SCIENCE, 2007, 12 (09) :419-426
[3]   Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations [J].
Boisson-Dernier, A ;
Chabaud, M ;
Garcia, F ;
Bécard, G ;
Rosenberg, C ;
Barker, DG .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (06) :695-700
[4]   The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis [J].
Brady, SM ;
Sarkar, SF ;
Bonetta, D ;
McCourt, P .
PLANT JOURNAL, 2003, 34 (01) :67-75
[5]   The LATD gene of Medicago truncatula is required for both nodule and root development [J].
Bright, LJ ;
Liang, Y ;
Mitchell, DM ;
Harris, JM .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2005, 18 (06) :521-532
[6]   MView: a web-compatible database search or multiple alignment viewer [J].
Brown, NP ;
Leroy, C ;
Sander, C .
BIOINFORMATICS, 1998, 14 (04) :380-381
[7]   Three Sequenced Legume Genomes and Many Crop Species: Rich Opportunities for Translational Genomics [J].
Cannon, Steven B. ;
May, Gregory D. ;
Jackson, Scott A. .
PLANT PHYSIOLOGY, 2009, 151 (03) :970-977
[8]   REMORA: a pilot in the ocean of BioMoby web-services [J].
Carrere, S ;
Gouzy, J .
BIOINFORMATICS, 2006, 22 (07) :900-901
[9]   Estimating genome conservation between crop and model legume species [J].
Choi, HK ;
Mun, JH ;
Kim, DJ ;
Zhu, HY ;
Baek, JM ;
Mudge, J ;
Roe, B ;
Ellis, N ;
Doyle, J ;
Kiss, GB ;
Young, ND ;
Cook, DR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (43) :15289-15294
[10]   De Novo Organ Formation from Differentiated Cells: Root Nodule Organogenesis [J].
Crespi, Martin ;
Frugier, Florian .
SCIENCE SIGNALING, 2008, 1 (49) :re11