NMR relaxation study of the complex formed between CBP and the activation domain of the nuclear hormone receptor coactivator ACTR

被引:72
作者
Ebert, Marc-Olivier [1 ,2 ]
Bae, Sung-Hun [1 ,2 ]
Dyson, H. Jane [1 ,2 ]
Wright, Peter E. [1 ,2 ]
机构
[1] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1021/bi701767j
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Overexpression of the p160 steroid receptor coactivator ACTR is associated with breast and ovarian cancers. Complex formation between ACTR and the general transcriptional coactivators CBP and p300 plays a key role in the nuclear receptor-dependent regulation of gene transcription and was the first reported example of mutual synergistic folding of two disordered polypeptide chains. In order to investigate the structure and dynamics of the free domains and complex, we measured and analyzed N-15 longitudinal and transverse relaxation rates and [H-1]-N-15 heteronuclear Overhauser effects of the backbone amides of the free and bound forms of human ACTR (residues 1041-1088) and mouse CBP (residues 2059-2117). Secondary chemical shifts for the free and bound forms were well correlated with the extent of backbone flexibility. The free ACTR domain has no residual secondary structure and shows all of the characteristics of a completely unfolded polypeptide chain. The free CBP domain retains most of the a-helical content seen in the complex but is significantly more flexible. Despite the disordered nature of the free individual domains, the complex has the motional characteristics of a completely folded protein complex and has no significant residual backbone fluctuation that might compensate for the massive loss of conformational entropy upon complex formation.
引用
收藏
页码:1299 / 1308
页数:10
相关论文
共 58 条
[1]   AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer [J].
Anzick, SL ;
Kononen, J ;
Walker, RL ;
Azorsa, DO ;
Tanner, MM ;
Guan, XY ;
Sauter, G ;
Kallioniemi, OP ;
Trent, JM ;
Meltzer, PS .
SCIENCE, 1997, 277 (5328) :965-968
[2]   Nuclear hormone receptors and gene expression [J].
Aranda, A ;
Pascual, A .
PHYSIOLOGICAL REVIEWS, 2001, 81 (03) :1269-1304
[3]   Interpretation of 15N NMR relaxation data of globular proteins using hydrodynamic calculations with HYDRONMR [J].
Bernadó, P ;
de la Torre, JG ;
Pons, M .
JOURNAL OF BIOMOLECULAR NMR, 2002, 23 (02) :139-150
[4]   Entropy in protein folding and in protein-protein interactions [J].
Brady, GP ;
Sharp, KA .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1997, 7 (02) :215-221
[5]   Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300 [J].
Chen, HW ;
Lin, RJ ;
Schiltz, RL ;
Chakravarti, D ;
Nash, A ;
Nagy, L ;
Privalsky, ML ;
Nakatani, Y ;
Evans, RM .
CELL, 1997, 90 (03) :569-580
[6]   Model-free analysis of protein dynamics: assessment of accuracy and model selection protocols based on molecular dynamics simulation [J].
Chen, JH ;
Brooks, CL ;
Wright, PE .
JOURNAL OF BIOMOLECULAR NMR, 2004, 29 (03) :243-257
[7]   DEVIATIONS FROM THE SIMPLE 2-PARAMETER MODEL-FREE APPROACH TO THE INTERPRETATION OF N-15 NUCLEAR MAGNETIC-RELAXATION OF PROTEINS [J].
CLORE, GM ;
SZABO, A ;
BAX, A ;
KAY, LE ;
DRISCOLL, PC ;
GRONENBORN, AM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (12) :4989-4991
[8]  
CLORE GM, 1994, METHOD ENZYMOL, V239, P349
[9]   Model-free model elimination: A new step in the model-free dynamic analysis of NMR relaxation data [J].
d'Auvergne, Edward J. ;
Gooley, Paul R. .
JOURNAL OF BIOMOLECULAR NMR, 2006, 35 (02) :117-135
[10]   The use of model selection in the model-free analysis of protein dynamics [J].
d'Auvergne, EJ ;
Gooley, PR .
JOURNAL OF BIOMOLECULAR NMR, 2003, 25 (01) :25-39