Bacterial DNA ligases

被引:188
作者
Wilkinson, A [1 ]
Day, J [1 ]
Bowater, R [1 ]
机构
[1] Univ E Anglia, Sch Biol Sci, Mol Biol Sector, Norwich NR4 7TJ, Norfolk, England
关键词
D O I
10.1046/j.1365-2958.2001.02479.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA ligases join breaks in the phosphodiester backbone of DNA molecules and are used in many essential reactions within the cell. All DNA ligases follow the same reaction mechanism, but they may use either ATP or NAD(+) as a cofactor. All Bacteria (eubacteria) contain NAD(+)-dependent DNA ligases, and the uniqueness of these enzymes to Bacteria makes them an attractive target for novel antibiotics. In addition to their NAD(+)-dependent enzymes, some Bacteria contain genes for putative ATP-dependent DNA ligases. The requirement for these different isozymes in Bacteria is unknown, but may be related to their utilization in different aspects of DNA metabolism. The putative ATP-dependent DNA ligases found in Bacteria are most closely related to proteins from Archaea and viruses. Phylogenetic analysis suggests that all NAD(+)-dependent DNA ligases are closely related, but the ATP-dependent enzymes have been acquired by Bacterial genomes on a number of separate occasions.
引用
收藏
页码:1241 / 1248
页数:8
相关论文
共 29 条
[1]   Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches [J].
Aravind, L ;
Koonin, EV .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 287 (05) :1023-1040
[2]   CLONING, OVEREXPRESSION AND NUCLEOTIDE-SEQUENCE OF A THERMOSTABLE DNA LIGASE-ENCODING GENE [J].
BARANY, F ;
GELFAND, DH .
GENE, 1991, 109 (01) :1-11
[3]   Characterization of an ATP-dependent DNA ligase encoded by Haemophilus influenzae [J].
Cheng, CH ;
Shuman, S .
NUCLEIC ACIDS RESEARCH, 1997, 25 (07) :1369-1374
[4]   Massive gene decay in the leprosy bacillus [J].
Cole, ST ;
Eiglmeier, K ;
Parkhill, J ;
James, KD ;
Thomson, NR ;
Wheeler, PR ;
Honoré, N ;
Garnier, T ;
Churcher, C ;
Harris, D ;
Mungall, K ;
Basham, D ;
Brown, D ;
Chillingworth, T ;
Connor, R ;
Davies, RM ;
Devlin, K ;
Duthoy, S ;
Feltwell, T ;
Fraser, A ;
Hamlin, N ;
Holroyd, S ;
Hornsby, T ;
Jagels, K ;
Lacroix, C ;
Maclean, J ;
Moule, S ;
Murphy, L ;
Oliver, K ;
Quail, MA ;
Rajandream, MA ;
Rutherford, KM ;
Rutter, S ;
Seeger, K ;
Simon, S ;
Simmonds, M ;
Skelton, J ;
Squares, R ;
Squares, S ;
Stevens, K ;
Taylor, K ;
Whitehead, S ;
Woodward, JR ;
Barrell, BG .
NATURE, 2001, 409 (6823) :1007-1011
[5]   Structural and mechanistic conservation in DNA ligases [J].
Doherty, AJ ;
Suh, SW .
NUCLEIC ACIDS RESEARCH, 2000, 28 (21) :4051-4058
[6]   A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures [J].
Georlette, D ;
Jónsson, ZO ;
Van Petegem, F ;
Chessa, JP ;
Van Beeumen, J ;
Hüscher, U ;
Gerday, C .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (12) :3502-3512
[7]   The BRCA1 C-terminal domain: structure and function [J].
Huyton, T ;
Bates, PA ;
Zhang, XD ;
Sternberg, MJE ;
Freemont, PS .
MUTATION RESEARCH-DNA REPAIR, 2000, 460 (3-4) :319-332
[8]   Multiplex PCR/LDR for detection of K-ras mutations in primary colon tumors [J].
Khanna, M ;
Park, P ;
Zirvi, M ;
Cao, WG ;
Picon, A ;
Day, J ;
Paty, P ;
Barany, F .
ONCOGENE, 1999, 18 (01) :27-38
[9]   INVITRO MUTAGENESIS AND FUNCTIONAL EXPRESSION IN ESCHERICHIA-COLI OF A CDNA-ENCODING THE CATALYTIC DOMAIN OF HUMAN DNA LIGASE-I [J].
KODAMA, K ;
BARNES, DE ;
LINDAHL, T .
NUCLEIC ACIDS RESEARCH, 1991, 19 (22) :6093-6099
[10]   Crystal structure of NAD+-dependent DNA ligase:: modular architecture and functional implications [J].
Lee, JY ;
Chang, C ;
Song, HK ;
Moon, J ;
Yang, JK ;
Kim, HK ;
Kwon, ST ;
Suh, SW .
EMBO JOURNAL, 2000, 19 (05) :1119-1129