Synthetic analysis of periodically stimulated excitable and oscillatory membrane models

被引:41
作者
Yoshino, K [1 ]
Nomura, T [1 ]
Pakdaman, K [1 ]
Sato, S [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Dept Syst & Human Sci, Osaka 5608531, Japan
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 01期
关键词
D O I
10.1103/PhysRevE.59.956
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Many excitable neuronal membranes become oscillatory when stimulated by large enough de currents. In this paper we investigate how the transition from excitable to oscillatory regimes affects the response of the membrane to periodic pulse trains. To this end, we examine how the dynamics of periodically stimulated FitzHugh-Nagumo neuron model changes as the system switches from excitability to oscillation. We show that, despite the important change in the asymptotic dynamics of the unperturbed model, p:q phase-locking (i.e., the model membrane discharges q times in p interstimulus intervals and q input-output intervals repeat periodically) regions in the stimulus period-stimulus amplitude parameter plane (Arnold tongues) change continuously when the model changes from excitable to oscillatory. We provide further evidence for the continuous change of the Arnold tongues by using an analytically tractable one-dimensional map that approximates the Poincare map of the forced system. We argue that the smooth change in the Arnold tongues results from the fact that, despite the qualitative difference between the asymptotic dynamics of unforced excitable and oscillatory regimes, other aspects of the dynamics such as the wave form of individual action potentials, are similar in the two regimes. [S1063-651X(99)04701-7].
引用
收藏
页码:956 / 969
页数:14
相关论文
共 37 条
[1]   2 STABLE STEADY-STATES IN THE HODGKIN-HUXLEY AXONS [J].
AIHARA, K ;
MATSUMOTO, G .
BIOPHYSICAL JOURNAL, 1983, 41 (01) :87-89
[2]   Periodically kicked hard oscillators [J].
Cecchi, G. A. ;
Gonzalez, D. L. ;
Magnasco, M. O. ;
Mindlin, G. B. ;
Piro, O. ;
Santillan, A. J. .
CHAOS, 1993, 3 (01) :51-62
[3]  
DOI SJ, 1995, MATH BIOSCI, V125, P229, DOI 10.1016/0025-5564(94)00035-X
[4]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&
[5]   SIMPLE-MODEL FOR PHASE LOCKING OF BIOLOGICAL OSCILLATORS [J].
GLASS, L ;
MACKEY, MC .
JOURNAL OF MATHEMATICAL BIOLOGY, 1979, 7 (04) :339-352
[6]   RESETTING AND ANNIHILATION OF REENTRANT ABNORMALLY RAPID HEARTBEAT [J].
GLASS, L ;
JOSEPHSON, ME .
PHYSICAL REVIEW LETTERS, 1995, 75 (10) :2059-2062
[7]   GLOBAL BIFURCATIONS OF A PERIODICALLY FORCED BIOLOGICAL OSCILLATOR [J].
GLASS, L ;
GUEVARA, MR ;
BELAIR, J ;
SHRIER, A .
PHYSICAL REVIEW A, 1984, 29 (03) :1348-1357
[8]  
Glass L., 1986, NONLINEAR OSCILLATIO, V66, P232, DOI [10.1007/978-3-642-93318-9.14, DOI 10.1007/978-3-642-93318-9.14]
[9]  
Glass L., 1988, CLOCK CHAOS RHYTHMS
[10]   ISOCHRONS AND PHASELESS SETS [J].
GUCKENHEIMER, J .
JOURNAL OF MATHEMATICAL BIOLOGY, 1975, 1 (03) :259-273