Extending the rule of mixture to the sub unit-cell level

被引:10
作者
Baben, Moritz To [1 ]
Music, Denis [1 ]
Emmerlich, Jens [1 ]
Schneider, Jochen M. [1 ]
机构
[1] Rhein Westfal TH Aachen, D-52074 Aachen, Germany
关键词
Materials design; Elastic behavior; Nanocomposite; Ab initio calculation; Density functional theory (DFT); ELASTIC PROPERTIES; BULK MODULUS; ELECTRONIC-STRUCTURE; YOUNGS MODULUS; TEMPERATURE; ALGORITHM; CRYSTAL;
D O I
10.1016/j.scriptamat.2011.07.020
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An extension of the rule of mixture (ROM) to the sub unit-cell level is reported. This approach-which was tested for MAX and MnAl4C3+n phases-provides a reliable estimate of the bulk moduli of single phases with layered crystal structure based on the calculated moduli of the constituents. Based on the ROM, density functional theory combinatorics is developed, reducing the calculation time for elastic properties by some orders of magnitude. This is a significant step towards knowledge-based materials design since elastic properties can be predicted based on an efficient high-throughput methodology. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:735 / 738
页数:4
相关论文
共 43 条
[1]   Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics [J].
Bao, WX ;
Zhu, CC ;
Cui, WZ .
PHYSICA B-CONDENSED MATTER, 2004, 352 (1-4) :156-163
[2]   The MN+1AXN phases:: A new class of solids;: Thermodynamically stable nanolaminates [J].
Barsoum, MW .
PROGRESS IN SOLID STATE CHEMISTRY, 2000, 28 (1-4) :201-281
[3]   FINITE STRAIN ISOTHERM AND VELOCITIES FOR SINGLE-CRYSTAL AND POLYCRYSTALLINE NACL AT HIGH-PRESSURES AND 300-DEGREE-K [J].
BIRCH, F .
JOURNAL OF GEOPHYSICAL RESEARCH, 1978, 83 (NB3) :1257-1268
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]  
Chawla K.K., 2001, Composite Materials Science and Engineering, V2nd
[6]   CALCULATION OF BULK MODULI OF DIAMOND AND ZINCBLENDE SOLIDS [J].
COHEN, ML .
PHYSICAL REVIEW B, 1985, 32 (12) :7988-7991
[7]   A comprehensive survey of M2AX phase elastic properties [J].
Cover, M. F. ;
Warschkow, O. ;
Bilek, M. M. M. ;
McKenize, D. R. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (30)
[8]   Elastic properties of Tin+1AlCn and Tin+1AlNn MAX phases [J].
Cover, Myles F. ;
Warschkow, Oliver ;
Bilek, Marcelo M. M. ;
McKenzie, David R. .
ADVANCED ENGINEERING MATERIALS, 2008, 10 (10) :935-938
[9]   Bonding properties and bulk modulus of M4AlC3 (M = V, Nb, and Ta) studied by first-principles calculations [J].
Du, Y. L. ;
Sun, Z. M. ;
Hashimoto, H. ;
Tian, W. B. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (05) :1039-1043
[10]   Systematic study on the pressure dependence of M2AlC phases (M=Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,W) [J].
Emmerlich, J. ;
Music, D. ;
Houben, A. ;
Dronskowski, R. ;
Schneider, J. M. .
PHYSICAL REVIEW B, 2007, 76 (22)