Crystal structures of Geobacillus stearothermophilus α-glucuronidase complexed with its substrate and products -: Mechanistic implications

被引:52
作者
Golan, G
Shallom, D
Teplitsky, A
Zaide, G
Shulami, S
Baasov, T
Stojanoff, V
Thompson, A
Shoham, Y [1 ]
Shoham, G
机构
[1] Technion Israel Inst Technol, Dept Food Engn & Biotechnol, IL-32000 Haifa, Israel
[2] Hebrew Univ Jerusalem, Dept Inorgan Chem, IL-91904 Jerusalem, Israel
[3] Hebrew Univ Jerusalem, Lab Struct Chem & Biol, IL-91904 Jerusalem, Israel
[4] Technion Israel Inst Technol, Inst Catalysis Sci & Technol, IL-32000 Haifa, Israel
[5] Technion Israel Inst Technol, Dept Chem, IL-32000 Haifa, Israel
[6] European Synchrotron Radiat Facil, F-38043 Grenoble, France
关键词
D O I
10.1074/jbc.M310098200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
alpha-Glucuronidases cleave the alpha-1,2-glycosidic bond between 4-O-methyl-D-glucuronic acid and short xylooligomers as part of the hemicellulose degradation system. To date, all of the alpha-glucuronidases are classified as family 67 glycosidases, which catalyze the hydrolysis via the investing mechanism. Here we describe several high resolution crystal structures of the alpha-glucuronidase (AguA) from Geobacillus stearothermophilus, in complex with its substrate and products. In the complex of AguA with the intact substrate, the 4-O-methyl-D-glucuronic acid sugar ring is distorted into a half-chair conformation, which is closer to the planar conformation required for the oxocarbenium ion-like transition state structure. In the active site, a water molecule is coordinated between two carboxylic acids, in an appropriate position to act as a nucleophile. From the structural data it is likely that two carboxylic acids, Asp(364) and Glu(392), activate together the nucleophilic water molecule. The loop carrying the catalytic general acid Glu(285) cannot be resolved in some of the structures but could be visualized in its "open" and "closed" (catalytic) conformations in other structures. The protonated state of Glu(285) is presumably stabilized by its proximity to the negative charge of the substrate, representing a new variation of substrate-assisted catalysis mechanism.
引用
收藏
页码:3014 / 3024
页数:11
相关论文
共 61 条
[1]   The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum [J].
Alzari, PM ;
Souchon, H ;
Dominguez, R .
STRUCTURE, 1996, 4 (03) :265-275
[2]   The active site topology of Aspergillus niger endopolygalacturonase II as studied by site-directed mutagenesis [J].
Armand, S ;
Wagemaker, MJM ;
Sánchez-Torres, P ;
Kester, HCM ;
van Santen, Y ;
Dijkstra, BW ;
Visser, J ;
Benen, JAE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (01) :691-696
[3]   Endo-beta-1,4-xylanase families: differences in catalytic properties [J].
Biely, P ;
Vrsanska, M ;
Tenkanen, M ;
Kluepfel, D .
JOURNAL OF BIOTECHNOLOGY, 1997, 57 (1-3) :151-166
[4]   Inverting character of α-glucuronidase A from Aspergillus tubingensis [J].
Biely, P ;
de Vries, RP ;
Vrsanská, M ;
Visser, J .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2000, 1474 (03) :360-364
[5]   Glycoside hydrolases and glycosyltransferases: families and functional modules [J].
Bourne, Y ;
Henrissat, B .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2001, 11 (05) :593-600
[6]   Detailed kinetic analysis of a family 52 glycoside hydrolase:: A β-xylosidase from Geobacillus stearothermophilus [J].
Bravman, T ;
Zolotnitsky, G ;
Belakhov, V ;
Shoham, G ;
Henrissat, B ;
Baasov, T ;
Shoham, Y .
BIOCHEMISTRY, 2003, 42 (35) :10528-10536
[7]   Glutamic acid 160 is the acid-base catalyst of β-xylosidase from Bacillus stearothermophilus T-6:: a family 39 glycoside hydrolase [J].
Bravman, T ;
Mechaly, A ;
Shulami, S ;
Belakhov, V ;
Baasov, T ;
Shoham, G ;
Shoham, Y .
FEBS LETTERS, 2001, 495 (1-2) :115-119
[8]   ALPHA-D-GLUCURANIDASES FROM THE XYLANOLYTIC THERMOPHILES CLOSTRIDIUM-STERCORARIUM AND THERMOANAEROBACTERIUM-SACCHAROLYTICUM [J].
BRONNENMEIER, K ;
MEISSNER, H ;
STOCKER, S ;
STAUDENBAUER, WL .
MICROBIOLOGY-SGM, 1995, 141 :2033-2040
[9]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[10]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254