Carbon materials for lithium-ion rechargeable batteries

被引:708
作者
Flandrois, S
Simon, B
机构
[1] Ctr Rech Paul Pascal, F-33600 Pessac, France
[2] Alcatel Alsthom Rech, SAFT, Route Nozay, F-91460 Marcoussis, France
关键词
electrodes; intercalation; electrochemical properties;
D O I
10.1016/S0008-6223(98)00290-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The recent development of lithium rechargeable batteries results from the use of carbon materials as lithium reservoir at the negative electrode. Reversible intercalation, or insertion, of lithium into the cal bon host lattice avoids the problem of lithium dendrite formation and provides large improvement in terms of cycleability and safety. This paper reviews the main achievements on performance and understanding of charge-discharge mechanisms, resulting from the tremendous activity devoted to these systems in the past few years. As a matter of fact, all carbon materials can be lithiated to a certain extent. However, the amount of lithium reversibly incorporated in the carbon lattice (the reversible capacity), the faradaic losses during the first charge-discharge cycle (the irreversible capacity), the profile of the voltage curves during charging and discharging, all depend on the structure, the texture and heteroatom content of the carbon material. In this paper, we successively examine the electrochemical behaviour of the main families of materials, namely, natural and synthetic graphites, graphitizable carbons, low-temperature and non-graphitizing carbons, and doped carbons. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:165 / 180
页数:16
相关论文
共 149 条
  • [1] Development of 10 Wh class lithium secondary cells in the 'New Sunshine Program'
    Aragane, J
    Matsui, K
    Andoh, H
    Suzuki, S
    Fukuda, H
    Ikeya, H
    Kitaba, K
    Ishikawa, R
    [J]. JOURNAL OF POWER SOURCES, 1997, 68 (01) : 13 - 18
  • [2] THE CATHODIC DECOMPOSITION OF PROPYLENE CARBONATE IN LITHIUM BATTERIES
    ARAKAWA, M
    YAMAKI, JI
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 219 (1-2) : 273 - 280
  • [3] Armand M. M. D. W., 1980, MAT ADV BATTERIES
  • [4] A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures
    Aurbach, D
    Markovsky, B
    Shechter, A
    EinEli, Y
    Cohen, H
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) : 3809 - 3820
  • [5] Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems
    Aurbach, D
    Zaban, A
    Ein-Eli, Y
    Weissman, I
    Chusid, O
    Markovsky, B
    Levi, M
    Levi, E
    Schechter, A
    Granot, E
    [J]. JOURNAL OF POWER SOURCES, 1997, 68 (01) : 91 - 98
  • [6] IDENTIFICATION OF SURFACE-FILMS FORMED ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS
    AURBACH, D
    DAROUX, ML
    FAGUY, PW
    YEAGER, E
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (07) : 1611 - 1620
  • [7] THE CORRELATION BETWEEN THE SURFACE-CHEMISTRY AND THE PERFORMANCE OF LI-CARBON INTERCALATION ANODES FOR RECHARGEABLE ROCKING-CHAIR TYPE BATTERIES
    AURBACH, D
    EINELI, Y
    CHUSID, O
    CARMELI, Y
    BABAI, M
    YAMIN, H
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (03) : 603 - 611
  • [9] ELECTROCHEMICAL PREPARATION AND PROPERTIES OF IONIC ALKALI METAL- AND NR4-GRAPHITE INTERCALATION COMPOUNDS IN ORGANIC ELECTROLYTES
    BESENHARD, JO
    [J]. CARBON, 1976, 14 (02) : 111 - 115
  • [10] FILMING MECHANISM OF LITHIUM-CARBON ANODES IN ORGANIC AND INORGANIC ELECTROLYTES
    BESENHARD, JO
    WINTER, M
    YANG, J
    BIBERACHER, W
    [J]. JOURNAL OF POWER SOURCES, 1995, 54 (02) : 228 - 231