Effects of global MHD instability on operational high beta-regime in LHD

被引:81
作者
Watanabe, KY
Sakakibara, S
Narushima, Y
Funaba, H
Narihara, K
Tanaka, K
Yamaguchi, T
Toi, K
Ohdachi, S
Kaneko, O
Yamada, H
Suzuki, Y
Cooper, WA
Murakami, S
Nakajima, N
Yamada, I
Kawahata, K
Tokuzawa, T
Komori, A
机构
[1] Natl Inst Fus Sci, Toki 5095292, Japan
[2] Grad Univ Adv Studies, Toki 5095292, Japan
[3] Kyoto Univ, Grad Sch Energy Sci, Kyoto 6068224, Japan
[4] Ecole Polytech Fed Lausanne, Ctr REch Phys Plasmas, Assoc Euratom Confederat Suisse, CH-1015 Lausanne, Switzerland
[5] Kyoto Univ, Dept Nucl Engn, Kyoto 6068501, Japan
关键词
D O I
10.1088/0029-5515/45/11/004
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the Large Helical Device (LHD), the highest operational averaged beta value has been expanded from 3.2% to 4% in the last 2 years by increasing the heating capability and exploring a new magnetic configuration with a high aspect ratio. Although the magneto-hydrodynamic (MHD) stability properties are considered to be unfavourable in the new high aspect configuration, the heating efficiency due to neutral beams and the transport properties are expected to be favourable in a high-beta range. In order to clarify the effect of the global ideal MHD unstable mode on the operational regimes in helical systems, especially the beta gradients in the peripheral region and the beta value, the MHD analysis and the transport analysis are performed in a high-beta range of up to 4% in LHD. In a high-beta range of more than 3%, the maxima of the observed thermal pressure gradients at a low order rational magnetic surface in the peripheral region are marginally unstable to the low-mode-number ideal MHD instability. Though a gradual degradation of the local transport in the region has been observed as beta increases, a disruptive degradation of the local transport does not appear in the beta range up to 4%.
引用
收藏
页码:1247 / 1254
页数:8
相关论文
共 29 条
[1]   VARIATIONAL FORMULATION OF THE LINEAR MHD STABILITY OF 3D-PLASMAS WITH NONINTERACTING HOT-ELECTRONS [J].
COOPER, WA .
PLASMA PHYSICS AND CONTROLLED FUSION, 1992, 34 (06) :1011-1036
[2]  
GRASSER AH, 1975, PHYS FLUIDS, V18, P143
[3]   COMPUTATIONAL STUDY OF 3-DIMENSIONAL MAGNETOHYDRODYNAMIC EQUILIBRIA IN TOROIDAL HELICAL SYSTEMS [J].
HARAFUJI, K ;
HAYASHI, T ;
SATO, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 81 (01) :169-192
[4]  
HAYASHI T, 1989, THEORY FUSION PLASMA
[5]   STEEPEST-DESCENT MOMENT METHOD FOR 3-DIMENSIONAL MAGNETOHYDRODYNAMIC EQUILIBRIA [J].
HIRSHMAN, SP ;
WHITSON, JC .
PHYSICS OF FLUIDS, 1983, 26 (12) :3553-3568
[6]   IDEAL AND RESISTIVE PRESSURE-GRADIENT DRIVEN INSTABILITIES IN HELIOTRON DR [J].
ICHIGUCHI, K ;
NAKAMURA, Y ;
WAKATANI, M ;
YANAGI, N ;
MORIMOTO, S .
NUCLEAR FUSION, 1989, 29 (12) :2093-2106
[7]   Overview of the Large Helical Device project [J].
Iiyoshi, A ;
Komori, A ;
Ejiri, A ;
Emoto, M ;
Funaba, H ;
Goto, M ;
Ida, K ;
Idei, H ;
Inagaki, S ;
Kado, S ;
Kaneko, O ;
Kawahata, K ;
Kobuchi, T ;
Kubo, S ;
Kumazawa, R ;
Masuzaki, S ;
Minami, T ;
Miyazawa, J ;
Morisaki, T ;
Morita, S ;
Murakami, S ;
Muto, S ;
Mutoh, T ;
Nagayama, Y ;
Nakamura, Y ;
Nakanishi, H ;
Narihara, K ;
Nishirnura, K ;
Noda, N ;
Ohdachi, S ;
Ohyabu, N ;
Oka, Y ;
Osakabe, M ;
Ozaki, T ;
Peterson, BJ ;
Sagara, A ;
Sakakibara, S ;
Sakamoto, R ;
Sasao, H ;
Sasao, M ;
Sato, K ;
Sato, M ;
Seki, T ;
Shimozuma, T ;
Shoji, M ;
Suzuki, H ;
Takeiri, Y ;
Tanaka, E ;
Toi, K ;
Tokuzawa, T .
NUCLEAR FUSION, 1999, 39 (9Y) :1245-1256
[8]   DESIGN STUDY FOR THE LARGE HELICAL DEVICE [J].
IIYOSHI, A ;
FUJIWARA, M ;
MOTOJIMA, O ;
OHYABU, N ;
YAMAZAKI, K .
FUSION TECHNOLOGY, 1990, 17 (01) :169-187
[9]   Temperature dependence of the thermal diffusivity in high-collisionality regimes in the large helical device [J].
Miyazawa, J ;
Yamada, H ;
Murakami, S ;
Funaba, H ;
Peterson, BJ ;
Osakabe, M ;
Tanaka, K ;
Sakakibara, S ;
Inagaki, S .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (06) :801-813
[10]  
Miyazawa J., 2005, J PLASMA FUSION RES, V81, P302