Group velocity of solitons

被引:59
作者
Haus, HA
Ippen, EP [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
关键词
Functions - Laser mode locking - Perturbation techniques - Phase shift - Ultrashort pulses;
D O I
10.1364/OL.26.001654
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is shown that, in addition to the well-known phase accumulation of a traveling soliton, which may be interpreted as a change of phase velocity as a result of the Kerr nonlinearity, there is a change in the speed of travel of the envelope, the group velocity. This analysis is extended to dispersion-managed solitons, for which it is shown that the discrepancy between phase- and group-velocity changes is generally smaller. (C) 2001 Optical Society of America.
引用
收藏
页码:1654 / 1656
页数:3
相关论文
共 8 条
[1]   Controlling the phase evolution of few-cycle light pulses [J].
Apolonski, A ;
Poppe, A ;
Tempea, G ;
Spielmann, C ;
Udem, T ;
Holzwarth, R ;
Hänsch, TW ;
Krausz, F .
PHYSICAL REVIEW LETTERS, 2000, 85 (04) :740-743
[2]   Dispersion-managed mode locking [J].
Chen, Y ;
Kärtner, FX ;
Morgner, U ;
Cho, SH ;
Haus, HA ;
Ippen, EP ;
Fujimoto, JG .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1999, 16 (11) :1999-2004
[3]  
HASEGAWA A, 1995, OXFORD SERIES OPTICA, V7, P95
[4]  
HAUS HA, 1995, IEEE J QUANTUM ELECT, V31, P1
[5]   Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J].
Jones, DJ ;
Diddams, SA ;
Ranka, JK ;
Stentz, A ;
Windeler, RS ;
Hall, JL ;
Cundiff, ST .
SCIENCE, 2000, 288 (5466) :635-639
[6]   NONLINEAR PULSE-PROPAGATION IN A MONOMODE DIELECTRIC GUIDE [J].
KODAMA, Y ;
HASEGAWA, A .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1987, 23 (05) :510-524
[7]   Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime [J].
Morgner, U ;
Ell, R ;
Metzler, G ;
Schibli, TR ;
Kärtner, FX ;
Fujimoto, JG ;
Haus, HA ;
Ippen, EP .
PHYSICAL REVIEW LETTERS, 2001, 86 (24) :5462-5465
[8]   Perturbation theory for the modified nonlinear Schrodinger solitons [J].
Shchesnovich, VS ;
Doktorov, EV .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 129 (1-2) :115-129