Large herbivores limit CO2 uptake and suppress carbon cycle responses to warming in West Greenland

被引:87
作者
Cahoon, Sean M. P. [1 ]
Sullivan, Patrick F. [2 ,3 ]
Post, Eric [1 ]
Welker, Jeffrey M. [2 ,3 ]
机构
[1] Penn State Univ, Dept Biol, Mueller Lab 208, University Pk, PA 16802 USA
[2] Univ Alaska Anchorage, Environm & Nat Resources Inst, Anchorage, AK 99508 USA
[3] Univ Alaska Anchorage, Dept Biol Sci, Anchorage, AK 99508 USA
基金
美国国家科学基金会;
关键词
Arctic; caribou; climate change; CO2; exchange; herbivory; leaf area; muskoxen; photosynthesis; respiration; shrub expansion; ARCTIC TUNDRA; SHRUB EXPANSION; PROJECTED CLIMATE; LONG-TERM; PLANTS; WINTER; FLUX; ECOSYSTEMS; NITROGEN; DYNAMICS;
D O I
10.1111/j.1365-2486.2011.02528.x
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Changes in the terrestrial carbon cycle may ameliorate or exacerbate future climatic warming. Research on this topic has focused almost exclusively on abiotic drivers, whereas biotic factors, including trophic interactions, have received comparatively little attention. We quantified the singular and interactive effects of herbivore exclusion and simulated warming on ecosystem CO2 exchange over two consecutive growing seasons in West Greenland. Exclusion of caribou and muskoxen over the past 8 years has led to dramatic increases in shrub cover, leaf area, ecosystem photosynthesis, and a nearly threefold increase in net C uptake. These responses were accentuated by warming, but only in the absence of herbivores. Carbon cycle responses to herbivore exclusion alone and combined with warming were driven by changes in gross ecosystem photosynthesis, as limited differences in ecosystem respiration were observed. Our results show that large herbivores can be of critical importance as mediators of arctic ecosystem responses to climate change.
引用
收藏
页码:469 / 479
页数:11
相关论文
共 61 条
[1]  
[Anonymous], 1983, HERBIVORY DYNAMICS A
[2]   GROWTH AND PHYSIOLOGICAL-RESPONSES OF TUNDRA PLANTS TO DEFOLIATION [J].
ARCHER, S ;
TIESZEN, LL .
ARCTIC AND ALPINE RESEARCH, 1980, 12 (04) :531-552
[3]  
Arft AM, 1999, ECOL MONOGR, V69, P491, DOI 10.1890/0012-9615(1999)069[0491:ROTPTE]2.0.CO
[4]  
2
[5]   Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest [J].
Barford, CC ;
Wofsy, SC ;
Goulden, ML ;
Munger, JW ;
Pyle, EH ;
Urbanski, SP ;
Hutyra, L ;
Saleska, SR ;
Fitzjarrald, D ;
Moore, K .
SCIENCE, 2001, 294 (5547) :1688-1691
[6]   The growth response of graminoid plants to goose grazing in a High Arctic environment [J].
Beaulieu, J ;
Gauthier, G ;
Rochefort, L .
JOURNAL OF ECOLOGY, 1996, 84 (06) :905-914
[7]  
Bjorkvoll E, 2009, ARCT ANTARCT ALP RES, V41, P88, DOI [10.1657/1938-4246(07-100)[BJORKVOLL]2.0.CO
[8]  
2, 10.1657/1523-0430-41.1.88]
[9]   Shrub expansion may reduce summer permafrost thaw in Siberian tundra [J].
Blok, D. ;
Heijmans, M. M. P. D. ;
Schaepman-Strub, G. ;
Kononov, A. V. ;
Maximov, T. C. ;
Berendse, F. .
GLOBAL CHANGE BIOLOGY, 2010, 16 (04) :1296-1305
[10]   Birth-site selection by Alaskan moose: Maternal strategies for coping with a risky environment [J].
Bowyer, RT ;
Van Ballenberghe, V ;
Kie, JG ;
Maier, JAK .
JOURNAL OF MAMMALOGY, 1999, 80 (04) :1070-1083