Intracellular heating of living cells through Neel relaxation of magnetic nanoparticles

被引:267
作者
Fortin, Jean-Paul [1 ]
Gazeau, Florence [1 ]
Wilhelm, Claire [1 ]
机构
[1] Univ Paris 07, CNRS, Lab Mat & Syst Complexes, UMR 7057, Paris, France
来源
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS | 2008年 / 37卷 / 02期
关键词
D O I
10.1007/s00249-007-0197-4
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Maghemite and cobalt ferrite anionic magnetic nanoparticles enter tumor cells and can be used as heat sources when exposed to a high-frequency magnetic field. Comparative studies of the two particles enable to unravel the magnetic heating mechanisms (Neel relaxation vs. Brown relaxation) responsible for the cellular temperature rise, and also to establish a simple model, adjusted to the experimental results, allowing to predict the intracellular heating efficiency of iron oxide nanoparticles. Hence, we are able to derive the best nanoparticle design for a given material with a view to intracellular hyperthermia-based applications.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 30 条
[1]   Targeting cancer cells: magnetic nanoparticles as drug carriers [J].
Alexiou, Christoph ;
Schmid, Roswitha J. ;
Jurgons, Roland ;
Kremer, Marcus ;
Wanner, Gerhard ;
Bergemann, Christian ;
Huenges, Ernst ;
Nawroth, Thomas ;
Arnold, Wolfgang ;
Parak, Fritz G. .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2006, 35 (05) :446-450
[2]   Cell internalization of anionic maghemite nanoparticles: Quantitative effect on magnetic resonance imaging [J].
Billotey, C ;
Wilhelm, C ;
Devaud, M ;
Bacri, JC ;
Bittoun, J ;
Gazeau, F .
MAGNETIC RESONANCE IN MEDICINE, 2003, 49 (04) :646-654
[3]   Neurotransplantation of magnetically labeled oligodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination [J].
Bulte, JWM ;
Zhang, SC ;
van Gelderen, P ;
Herynek, V ;
Jordan, EK ;
Duncan, ID ;
Frank, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :15256-15261
[4]   Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy [J].
DeNardo, SJ ;
DeNardo, GL ;
Miers, LA ;
Natarajan, A ;
Foreman, AR ;
Gruettner, C ;
Adamson, GN ;
Ivkov, R .
CLINICAL CANCER RESEARCH, 2005, 11 (19) :7087S-7092S
[5]   Detection of single mammalian cells by high-resolution magnetic resonance imaging [J].
Dodd, SJ ;
Williams, M ;
Suhan, JP ;
Williams, DS ;
Koretsky, AP ;
Ho, C .
BIOPHYSICAL JOURNAL, 1999, 76 (01) :103-109
[6]   Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia [J].
Fortin, Jean-Paul ;
Wilhelm, Claire ;
Servais, Jacques ;
Menager, Christine ;
Bacri, Jean-Claude ;
Gazeau, Florence .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (09) :2628-2635
[7]   Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice:: Feasibility [J].
Fortin-Ripoche, JP ;
Martina, MS ;
Gazeau, F ;
Ménager, C ;
Wilhelm, C ;
Bacri, JC ;
Lesieur, S ;
Clément, O .
RADIOLOGY, 2006, 239 (02) :415-424
[8]   Magnetically modulated therapeutic systems [J].
Häfeli, UO .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2004, 277 (1-2) :19-24
[9]   Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia [J].
Hergt, R ;
Hiergeist, R ;
Hilger, I ;
Kaiser, WA ;
Lapatnikov, Y ;
Margel, S ;
Richter, U .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 270 (03) :345-357
[10]   Electromagnetic heating of breast tumors in interventional radiology:: In vitro and in vivo studies in human cadavers and mice [J].
Hilger, I ;
Andrä, W ;
Hergt, R ;
Hiergeist, R ;
Schubert, H ;
Kaiser, WA .
RADIOLOGY, 2001, 218 (02) :570-575