Synthesis and characteristics of Fe3+-doped SnO2 nanoparticles via sol-gel-calcination or sol-gel-hydrothermal route

被引:123
作者
Fang, L. M. [1 ]
Zu, X. T. [1 ,2 ]
Li, Z. J. [1 ]
Zhu, S. [1 ,3 ]
Liu, C. M. [1 ]
Zhou, W. L. [5 ]
Wang, L. M. [3 ,4 ]
机构
[1] Univ Elect Sci & Technol China, Dept Appl Phys, Chengdu 610054, Peoples R China
[2] Chinese Acad Sci, Int Ctr Mat Phys, Shenyang 110015, Peoples R China
[3] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[5] Univ New Orleans, Adv Mat Res Inst, New Orleans, LA 70148 USA
关键词
SnO2; sol-gel; hydrothermal; calcination; doping; nanoparticles;
D O I
10.1016/j.jallcom.2006.12.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fe3+-doped SnO2 nanoparticles were prepared by sol-gel-calcination and sol-gel-hydrothermal routes, respectively, and their microstructure as well as physical and chemical properties have been characterized and compared. Based on XRD, TEM, and Fourier transform infrared (FT-IR) analyses, the SnO2 crystallites with the tetragonal rutile structure formed directly during a hydrothermal process. Compared with the sol-gel-calcination route, sol-gel-hydrothermal route led to better dispersed nanoparticles with a narrower size distribution and a larger Brunauer-Emmett-Teller (BET) surface area. Also, the Fe3+-doped SnO2 nanoparticles prepared by sol-gel-hydrothermal route had a better thermal stability against agglomeration and crystalline grain size growth than those prepared by the sol-gel-calcination route. XRD, EDS, and diffuse reflectance spectra (DRS) analyses proved that the Fe3+ and SnO2 formed a solid solution in the nanoparticles with both processing routes. A significant red shift in the UV absorbing band edge was observed with the increasing Fe3+ content. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:261 / 267
页数:7
相关论文
共 33 条
[1]  
ABEA US, 2005, SENSOR ACTUAT B-CHEM, V107, P516
[2]   Structural and magnetic properties of NiFe2O4-SnO2 nanocomposite [J].
Albuquerque, AS ;
Ardisson, JD ;
Macedo, WAA ;
Plivelic, TS ;
Torriani, IL ;
Larrea, JJ ;
Saitovitch, EB .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 272 :2211-2213
[3]   PHOTOCATALYTIC HYDROGENATION OF CH3CCH WITH H2O ON SMALL-PARTICLE TIO2 - SIZE QUANTIZATION EFFECTS AND REACTION INTERMEDIATES [J].
ANPO, M ;
SHIMA, T ;
KODAMA, S ;
KUBOKAWA, Y .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (16) :4305-4310
[4]   Grain size effects on H-2 gas sensitivity of thick film resistor using SnO2 nanoparticles [J].
Ansari, SG ;
Boroojerdian, P ;
Sainkar, SR ;
Karekar, RN ;
Aiyer, RC ;
Kulkarni, SK .
THIN SOLID FILMS, 1997, 295 (1-2) :271-276
[5]   Grain size dependent electrical studies on nanocrystalline SnO2 [J].
Bose, AC ;
Thangadurai, P ;
Ramasamy, S .
MATERIALS CHEMISTRY AND PHYSICS, 2006, 95 (01) :72-78
[6]   THE ROLE OF METAL-ION DOPANTS IN QUANTUM-SIZED TIO2 - CORRELATION BETWEEN PHOTOREACTIVITY AND CHARGE-CARRIER RECOMBINATION DYNAMICS [J].
CHOI, WY ;
TERMIN, A ;
HOFFMANN, MR .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (51) :13669-13679
[7]   In situ diffuse reflectance infrared spectroscopy study of CO adsorption on SnO2 [J].
Emiroglu, S ;
Bârsan, N ;
Weimar, U ;
Hoffmann, V .
THIN SOLID FILMS, 2001, 391 (02) :176-185
[8]   Dye sensitization of nanocrystalline tin oxide by perylene derivatives [J].
Ferrere, S ;
Zaban, A ;
Gregg, BA .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (23) :4490-4493
[9]   Synthesis and luminescent properties of SnO2:Eu nanopowder via polyacrylamide gel method [J].
Fu, XY ;
Zhang, HW ;
Niu, SY ;
Xin, Q .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (03) :603-607
[10]   Luminescent properties of Mn2+-doped SnO2 nanoparticles [J].
Gu, F ;
Wang, SF ;
Lü, MK ;
Qi, YX ;
Zhou, QJ ;
Xu, D ;
Yuan, DR .
INORGANIC CHEMISTRY COMMUNICATIONS, 2003, 6 (07) :882-885