Reproducing Gaussian-3 total energy using fitted atomic correlation parameters for the rapid estimation of correlation energy from partial charges method and Hartree-Fock results

被引:17
作者
Kristyán, S
Ruzsinszky, A
Csonka, GI
机构
[1] George Washington Univ, Dept Chem, Washington, DC 20052 USA
[2] Tech Univ Budapest, Dept Inorgan Chem, H-1521 Budapest, Hungary
关键词
D O I
10.1021/jp0018192
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gaussian-3 total energies has been approximated using single-point Hartree-Fock-self-consistent field (HF-SCF) total energies plus the correlation energy corrections calculated from the HF-SCF partial atomic charges according to the rapid estimation of correlation energy from partial charges (RECEP) method (Chem. Phys. Lett. 1999, 307, 469). Sixty-five closed-shell neutral molecules (composed of H, C, N, O, and F atoms) of the G2/97 thermochemistry database were used to obtain the fitted RECEP atomic correlation parameters. Four different mathematical definitions of partial charges were used to calculate the molecular correlation energies. The best results were obtained using the natural population analysis, although the other three are also recommended for use. The overall root-mean-square deviation of the RECEP-3 total energies from Gaussian-3 total energies for the 65 energies is 1.76 kcal/mol (the average absolute deviation is 1.43 kcal/mol). The root-mean-square deviation of fitted RECEP-3 enthalpies of formation from experimental enthalpies of, formation for the 65 molecules is 2.17 kcal/mol (the average absolute deviation is 1.75 kcal/mol). The current fitted parameters of the RECEP method are recommended to estimate total correlation energies of closed-shell ground-state neutral molecules at stationary points of the potential-energy surface.
引用
收藏
页码:1926 / 1933
页数:8
相关论文
共 23 条
[1]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[2]   DETERMINING ATOM-CENTERED MONOPOLES FROM MOLECULAR ELECTROSTATIC POTENTIALS - THE NEED FOR HIGH SAMPLING DENSITY IN FORMAMIDE CONFORMATIONAL-ANALYSIS [J].
BRENEMAN, CM ;
WIBERG, KB .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (03) :361-373
[3]   GROUND-STATE CORRELATION ENERGIES FOR ATOMIC IONS WITH 3 TO 18 ELECTRONS [J].
CHAKRAVORTY, SJ ;
GWALTNEY, SR ;
DAVIDSON, ER ;
PARPIA, FA ;
FISCHER, CF .
PHYSICAL REVIEW A, 1993, 47 (05) :3649-3670
[4]   Gaussian-3 (G3) theory for molecules containing first and second-row atoms [J].
Curtiss, LA ;
Raghavachari, K ;
Redfern, PC ;
Rassolov, V ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (18) :7764-7776
[5]   Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities [J].
Curtiss, LA ;
Redfern, PC ;
Raghavachari, K ;
Pople, JA .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (01) :42-55
[6]   GAUSSIAN-2 THEORY FOR MOLECULAR-ENERGIES OF 1ST-ROW AND 2ND-ROW COMPOUNDS [J].
CURTISS, LA ;
RAGHAVACHARI, K ;
TRUCKS, GW ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (11) :7221-7230
[7]  
CURTISS LA, COMPUTATIONAL THERMO
[8]  
Dreizler R.M., 1990, Density Functional Theory
[9]   APPLICATION OF SYSTEMATIC SEQUENCES OF WAVE-FUNCTIONS TO THE WATER DIMER [J].
FELLER, D .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (08) :6104-6114
[10]  
Frisch M.J., 1998, GAUSSIAN 98