Ceramic-polymer electrolytes for all-solid-state lithium rechargeable batteries

被引:32
作者
Jiang, G [1 ]
Maeda, S
Saito, Y
Tanase, S
Sakai, T
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Inst Ubiquitous Energy Devices, Res Team Secondary Battery Syst, Osaka 5638577, Japan
[2] Nippon Synthet Chem Ind Co Ltd, Osaka 5670052, Japan
关键词
D O I
10.1149/1.1865892
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
New polyurethane acrylate (PUA)-based nanoceramic-polymer electrolytes in a high ceramic filler content were examined in all-solid-state lithium-polymer cells (Li/PUA-SiO2/Li0.33MnO2) and at 60 degrees C. The composite electrolyte containing more than 20 wt % hydrophilic nano-SiO2 enhanced its mechanical strength 600% compared to the ceramic-free electrolyte. The additions of nano-SiO2 powders in a high concentration protected the electrode surfaces, improved greatly the interfacial stability between composite cathode and the electrolyte, and gave rise to a further reversible lithium stripping-deposition process. The cells showed good rate capacity and excellent cyclability. The discharge capacity kept 65% of initial capacity after 300 cycles with a coulombic efficiency approaching 100%. Capacity fading upon cycling was believed to be due to the increase of cell resistance during charge-discharge cycling. The cell self-charge loss at 60 degrees C was extremely low about 0.05% per day. (c) 2005 The Electrochemical Society.
引用
收藏
页码:A767 / A773
页数:7
相关论文
共 25 条
[1]   Investigation on the stability of the lithium-polymer electrolyte interface [J].
Appetecchi, GB ;
Scaccia, S ;
Passerini, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (12) :4448-4452
[2]  
Armand M. B., 1979, Fast Ion Transport in Solids. Electrodes and Electrolytes, P131
[3]   ELECTROCHEMICAL PROPERTIES OF POLYETHYLENE OXIDE-LI[(CF3SO2)(2)N]-GAMMA-LIALO2 COMPOSITE POLYMER ELECTROLYTES [J].
BORGHINI, MC ;
MASTRAGOSTINO, M ;
PASSERINI, S ;
SCROSATI, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (07) :2118-2121
[4]   Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes [J].
Capiglia, C ;
Mustarelli, P ;
Quartarone, E ;
Tomasi, C ;
Magistris, A .
SOLID STATE IONICS, 1999, 118 (1-2) :73-79
[5]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[6]   ELECTROCHEMICAL MEASUREMENT OF TRANSFERENCE NUMBERS IN POLYMER ELECTROLYTES [J].
EVANS, J ;
VINCENT, CA ;
BRUCE, PG .
POLYMER, 1987, 28 (13) :2324-2328
[7]   Composite polymer electrolytes using surface-modified fumed silicas: conductivity and rheology [J].
Fan, J ;
Raghavan, SR ;
Yu, XY ;
Khan, SA ;
Fedkiw, PS ;
Hou, J ;
Baker, GL .
SOLID STATE IONICS, 1998, 111 (1-2) :117-123
[8]  
Gray F, 2000, NEW TRENDS ELECTROCH, V1, P351
[9]   Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system [J].
Jayathilaka, PARD ;
Dissanayake, MAKL ;
Albinsson, I ;
Mellander, BE .
ELECTROCHIMICA ACTA, 2002, 47 (20) :3257-3268
[10]  
JIANG G, IN PRESS J POWER SOU