Individual gap junction plaques contain multiple connexins in arterial endothelium

被引:149
作者
Yeh, HI
Rothery, S
Dupont, E
Coppen, SR
Severs, NJ
机构
[1] Univ London Imperial Coll Sci Technol & Med, Natl Heart & Lung Inst, London, England
[2] Taipei Med Coll, Mackay Mem Hosp, Taipei, Taiwan
基金
英国惠康基金;
关键词
gap junction; connexin; endothelium; immunoconfocal microscopy; freeze-fracture cytochemistry;
D O I
10.1161/01.RES.83.12.1248
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Gap-junctional intercellular communication in endothelial cells is implicated in the coordination of growth, migration, and vasomotor responses. Up to 3 connexin types, connexin40 (Cx40), Cx37, and Cx43 may be expressed in vascular endothelium according to vascular site, species, and physiological conditions. To establish how these connexins are organized at the level of the individual endothelial gap junction, we used affinity-purified connexin-specific antibodies raised in 3 different species to permit double and triple immunolabeling, in combination with confocal and electron microscopy. Using HeLa cells transfected with Cx37 and Cx40 for characterization, the anti-Cx37 antibody (raised in rabbit) and the anti-Cx40 antibody (raised in guinea pig) were shown to recognize single bands of 37 and 40 kDa, respectively, on Western blots and to give prominent punctate labeling at the cell borders, specifically in the corresponding transfectant. By applying these antibodies together with mouse monoclonal anti-Cx43 for double and triple immunofluorescence labeling at confocal microscopy, rat aortic and pulmonary arterial endothelia were found to express all 3 connexin types, whereas coronary artery endothelium expressed Cx40 and Cx37 but lacked Cx43. High-resolution en face confocal viewing of the aortic endothelium after double labeling demonstrated frequent colocalization of connexins, with distinct variation in the expression pattern within a given cell, where it made contact with different neighbors. Triple immunogold labeling at the electron-microscopic level revealed that aortic endothelial gap junctions commonly contain all 3 connexin types. This represents the first definitive demonstration of any cell type in vivo expressing 3 different connexins organized within the same gap-junctional plaque.
引用
收藏
页码:1248 / 1263
页数:16
相关论文
共 62 条
[1]   GAP JUNCTION PROTEIN CONNEXIN40 IS PREFERENTIALLY EXPRESSED IN VASCULAR ENDOTHELIUM AND CONDUCTIVE BUNDLES OF RAT MYOCARDIUM AND IS INCREASED UNDER HYPERTENSIVE CONDITIONS [J].
BASTIDE, B ;
NEYSES, L ;
GANTEN, D ;
PAUL, M ;
WILLECKE, K ;
TRAUB, O .
CIRCULATION RESEARCH, 1993, 73 (06) :1138-1149
[2]   Monovalent cation permeation through the connexin40 gap junction channel - Cs, Rb, K, Na, Li, TEA, TMA, TBA, and effects of anions Br, Cl, F, acetate, aspartate, glutamate, and NO3 [J].
Beblo, DA ;
Veenstra, RD .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 109 (04) :509-522
[3]   UNIQUE CONDUCTANCE, GATING, AND SELECTIVE PERMEABILITY PROPERTIES OF GAP JUNCTION CHANNELS FORMED BY CONNEXIN40 [J].
BEBLO, DA ;
WANG, HZ ;
BEYER, EC ;
WESTPHALE, EM ;
VEENSTRA, RD .
CIRCULATION RESEARCH, 1995, 77 (04) :813-822
[4]   MOLECULAR-CLONING AND EXPRESSION OF RAT CONNEXIN40, A GAP JUNCTION PROTEIN EXPRESSED IN VASCULAR SMOOTH-MUSCLE [J].
BEYER, EC ;
REED, KE ;
WESTPHALE, EM ;
KANTER, HL ;
LARSON, DM .
JOURNAL OF MEMBRANE BIOLOGY, 1992, 127 (01) :69-76
[5]   Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37 [J].
Brink, PR ;
Cronin, K ;
Banach, K ;
Peterson, E ;
Westphale, EM ;
Seul, KH ;
Ramanan, SV ;
Beyer, EC .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1997, 273 (04) :C1386-C1396
[6]   The cellular Internet: On-line with connexins [J].
Bruzzone, R ;
White, TW ;
Goodenough, DA .
BIOESSAYS, 1996, 18 (09) :709-718
[7]   CONNEXIN40, A COMPONENT OF GAP-JUNCTIONS IN VASCULAR ENDOTHELIUM, IS RESTRICTED IN ITS ABILITY TO INTERACT WITH OTHER CONNEXINS [J].
BRUZZONE, R ;
HAEFLIGER, JA ;
GIMLICH, RL ;
PAUL, DL .
MOLECULAR BIOLOGY OF THE CELL, 1993, 4 (01) :7-20
[8]   Connections with connexins: The molecular basis of direct intercellular signaling [J].
Bruzzone, R ;
White, TW ;
Paul, DL .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 238 (01) :1-27
[9]   BIOPHYSICAL PROPERTIES OF GAP JUNCTION CHANNELS FORMED BY MOUSE CONNEXIN40 IN INDUCED PAIRS OF TRANSFECTED HUMAN HELA-CELLS [J].
BUKAUSKAS, FF ;
ELFGANG, C ;
WILLECKE, K ;
WEINGART, R .
BIOPHYSICAL JOURNAL, 1995, 68 (06) :2289-2298
[10]   RESIN DEVELOPMENT FOR ELECTRON-MICROSCOPY AND AN ANALYSIS OF EMBEDDING AT LOW-TEMPERATURE [J].
CARLEMALM, E ;
GARAVITO, RM ;
VILLIGER, W .
JOURNAL OF MICROSCOPY-OXFORD, 1982, 126 (MAY) :123-143