Nanoscale nuclear magnetic resonance with chemical resolution

被引:258
作者
Aslam, Nabeel [1 ,2 ]
Pfender, Matthias [1 ,2 ]
Neumann, Philipp [1 ,2 ]
Reuter, Rolf [1 ,2 ]
Zappe, Andrea [1 ,2 ]
de Oliveira, Felipe Favaro [1 ,2 ]
Denisenko, Andrej [1 ,2 ]
Sumiya, Hitoshi [3 ]
Onoda, Shinobu [4 ]
Isoya, Junichi [5 ]
Wrachtrup, Joerg [1 ,6 ]
机构
[1] Univ Stuttgart, Ctr Integrated Quantum Sci & Technol IQST, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Phys Inst 3, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[3] Sumitomo Elect Ind, Itami, Hyogo 6640016, Japan
[4] Natl Inst Quantum & Radiol Sci & Technol, 1233 Watanuki, Takasaki, Gunma 3701292, Japan
[5] Univ Tsukuba, Research Ctr Knowledge Communities, Tsukuba, Ibaraki 3058550, Japan
[6] Max Planck Inst Solid State Res, Stuttgart, Germany
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
NMR-SPECTROSCOPY;
D O I
10.1126/science.aam8697
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nuclear magnetic resonance (NMR) spectroscopy is a key analytical technique in chemistry, biology, and medicine. However, conventional NMR spectroscopy requires an at least nanoliter-sized sample volume to achieve sufficient signal. We combined the use of a quantum memory and high magnetic fields with a dedicated quantum sensor based on nitrogen vacancy centers in diamond to achieve chemical shift resolution in H-1 and F-19 NMR spectroscopy of 20-zeptoliter sample volumes. We demonstrate the application of NMR pulse sequences to achieve homonuclear decoupling and spin diffusion measurements. The best measured NMR linewidth of a liquid sample was similar to 1 part per million, mainly limited by molecular diffusion. To mitigate the influence of diffusion, we performed high-resolution solid-state NMR by applying homonuclear decoupling and achieved a 20-fold narrowing of the NMR linewidth.
引用
收藏
页码:67 / 71
页数:5
相关论文
共 33 条
[1]  
Abragam A., 1982, NUCL MAGNETISM ORDER
[2]   Single spin optically detected magnetic resonance with 60-90 GHz (E-band) microwave resonators [J].
Aslam, Nabeel ;
Pfender, Matthias ;
Stoehr, Rainer ;
Neumann, Philipp ;
Scheffler, Marc ;
Sumiya, Hitoshi ;
Abe, Hiroshi ;
Onoda, Shinobu ;
Ohshima, Takeshi ;
Isoya, Junichi ;
Wrachtrup, Joerg .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (06)
[3]   2-DIMENSIONAL SPECTROSCOPY - APPLICATION TO NUCLEAR MAGNETIC-RESONANCE [J].
AUE, WP ;
BARTHOLDI, E ;
ERNST, RR .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (05) :2229-2246
[4]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[5]   Measurement of the local 1H spin-diffusion coefficient in polymers [J].
Chen, Q ;
Schmidt-Rohr, K .
SOLID STATE NUCLEAR MAGNETIC RESONANCE, 2006, 29 (1-3) :142-152
[6]   Nanoscale magnetic resonance imaging [J].
Degen, C. L. ;
Poggio, M. ;
Mamin, H. J. ;
Rettner, C. T. ;
Rugar, D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (05) :1313-1317
[7]  
DeVience SJ, 2015, NAT NANOTECHNOL, V10, P129, DOI [10.1038/nnano.2014.313, 10.1038/NNANO.2014.313]
[8]   Small-Volume Nuclear Magnetic Resonance Spectroscopy [J].
Fratila, Raluca M. ;
Velders, Aldrik H. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 4, 2011, 4 :227-249
[9]   Physics of magnetic resonance imaging: from spin to pixel [J].
Gossuin, Yves ;
Hocq, Aline ;
Gillis, Pierre ;
Vuong, Quoc Lam .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (21)
[10]  
Häberle T, 2015, NAT NANOTECHNOL, V10, P125, DOI [10.1038/nnano.2014.299, 10.1038/NNANO.2014.299]