Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry

被引:123
作者
Munevar, S
Wang, YL
Dembo, M
机构
[1] Univ Massachusetts, Sch Med, Dept Physiol, Worcester, MA 01605 USA
[2] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
关键词
cell migration; focal adhesions; actin; vinculin; lamellipodium;
D O I
10.1242/jcs.00795
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Ca2+ ions have long been implicated in regulating various aspects of cell movements. We found that stretching forces applied through flexible substrata induced increases in both intracellular Ca2+ concentration and traction forces of NIH3T3 fibroblasts. Conversely, application of gadolinium, an inhibitor of stretch-activated ion channels, or removal of extracellular free Ca2+ caused inhibition of traction forces. Gadolinium treatment also inhibited cell migration without affecting the spread morphology or protrusive activities. Local application of gadolinium to the trailing region had no detectable effect on the overall traction forces, while local application to the leading edge caused a global inhibition of traction forces and cell migration, suggesting that stretch-activated channels function primarily at the leading edge. Immunofluorescence microscopy indicated that gadolinium caused a pronounced decrease in vinculin and phosphotyrosine concentrations at focal adhesions. Our observations suggest that stretch-activated Ca2+ entry in the frontal region regulates the organization of focal adhesions and the output of mechanical forces. This mechanism probably plays an important role in sustaining cell migration and in mediating active and passive responses to mechanical signals.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 44 条
[1]   COLOCALIZATION OF CALCIUM-DEPENDENT PROTEASE-II AND ONE OF ITS SUBSTRATES AT SITES OF CELL-ADHESION [J].
BECKERLE, MC ;
BURRIDGE, K ;
DEMARTINO, GN ;
CROALL, DE .
CELL, 1987, 51 (04) :569-577
[2]   Flexible polyacrylamide substrata for the analysis of mechanical interactions at cell-substratum adhesions [J].
Beningo, KA ;
Lo, CM ;
Wang, YL .
METHODS IN CELL-MATRIX ADHESION, 2002, 69 :325-339
[3]   Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts [J].
Beningo, KA ;
Dembo, M ;
Kaverina, I ;
Small, JV ;
Wang, YL .
JOURNAL OF CELL BIOLOGY, 2001, 153 (04) :881-887
[4]   CALCIUM GRADIENTS UNDERLYING POLARIZATION AND CHEMOTAXIS OF EOSINOPHILS [J].
BRUNDAGE, RA ;
FOGARTY, KE ;
TUFT, RA ;
FAY, FS .
SCIENCE, 1991, 254 (5032) :703-706
[5]   Focal adhesions, contractility, and signaling [J].
Burridge, K ;
ChrzanowskaWodnicka, M .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1996, 12 :463-518
[6]   Cellular control lies in the balance of forces [J].
Chicurel, ME ;
Chen, CS ;
Ingber, DE .
CURRENT OPINION IN CELL BIOLOGY, 1998, 10 (02) :232-239
[7]  
Cox EA, 1998, MICROSC RES TECHNIQ, V43, P412, DOI 10.1002/(SICI)1097-0029(19981201)43:5<412::AID-JEMT7>3.0.CO
[8]  
2-F
[9]   Stresses at the cell-to-substrate interface during locomotion of fibroblasts [J].
Dembo, M ;
Wang, YL .
BIOPHYSICAL JOURNAL, 1999, 76 (04) :2307-2316
[10]   EXCITATION-CONTRACTION COUPLING AND THE MECHANISM OF MUSCLE-CONTRACTION [J].
EBASHI, S .
ANNUAL REVIEW OF PHYSIOLOGY, 1991, 53 :1-16