Comparisons of various types of normality tests

被引:533
作者
Yap, B. W. [1 ]
Sim, C. H. [2 ]
机构
[1] Univ Teknol MARA, Fac Comp & Math Sci, Shah Alam 40450, Selangor, Malaysia
[2] Univ Malaya, Inst Math Sci, Kuala Lumpur 50603, Malaysia
关键词
normality tests; Monte Carlo simulation; skewness; kurtosis; generalized lambda distribution; VARIANCE TEST; APPROXIMATE ANALYSIS; DEPARTURE;
D O I
10.1080/00949655.2010.520163
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Normality tests can be classified into tests based on chi-squared, moments, empirical distribution, spacings, regression and correlation and other special tests. This paper studies and compares the power of eight selected normality tests: the Shapiro-Wilk test, the Kolmogorov-Smirnov test, the Lilliefors test, the Cramer-von Mises test, the Anderson-Darling test, the D'Agostino-Pearson test, the Jarque-Bera test and chi-squared test. Power comparisons of these eight tests were obtained via the Monte Carlo simulation of sample data generated from alternative distributions that follow symmetric short-tailed, symmetric long-tailed and asymmetric distributions. Our simulation results show that for symmetric short-tailed distributions, D'Agostino and Shapiro-Wilk tests have better power. For symmetric long-tailed distributions, the power of Jarque-Bera and D'Agostino tests is quite comparable with the Shapiro-Wilk test. As for asymmetric distributions, the Shapiro-Wilk test is the most powerful test followed by the Anderson-Darling test.
引用
收藏
页码:2141 / 2155
页数:15
相关论文
共 40 条
[1]   A TEST OF GOODNESS OF FIT [J].
ANDERSON, TW ;
DARLING, DA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1954, 49 (268) :765-769
[2]  
[Anonymous], 2006, TURK J MED SCI
[3]  
[Anonymous], 1986, Statistics: Textbooks and Monographs, Vol. 68
[4]   OMNIBUS TEST CONTOURS FOR DEPARTURES FROM NORMALITY BASED ON SQUARE-ROOT B1 AND B2 [J].
BOWMAN, KO ;
SHENTON, LR .
BIOMETRIKA, 1975, 62 (02) :243-250
[5]  
Conover WJ, 1999, Practical nonparametric statistics
[6]  
Cramér H, 1928, SKAND AKTUARIETIDSKR, V11, P13
[7]   TESTS FOR DEPARTURE FROM NORMALITY - EMPIRICAL RESULTS FOR DISTRIBUTIONS OF B2 AND SQUARE ROOT B1 [J].
DAGOSTIN.R ;
PEARSON, ES .
BIOMETRIKA, 1973, 60 (03) :613-622
[8]   A SUGGESTION FOR USING POWERFUL AND INFORMATIVE TESTS OF NORMALITY [J].
DAGOSTINO, RB ;
BELANGER, A ;
DAGOSTINO, RB .
AMERICAN STATISTICIAN, 1990, 44 (04) :316-321
[9]   AN ANALYTIC APPROXIMATION TO THE DISTRIBUTION OF LILLIEFORS TEST STATISTIC FOR NORMALITY [J].
DALLAL, GE ;
WILKINSON, L .
AMERICAN STATISTICIAN, 1986, 40 (04) :294-296
[10]   Comprehensive study of tests for normality and symmetry: extending the Spiegelhalter test [J].
Farrell, PJ ;
Rogers-Stewart, K .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2006, 76 (09) :803-816