Eosinophil peroxidase catalyzes bromination of free nucleosides and double-stranded DNA

被引:39
作者
Shen, ZZ
Mitra, SN
Wu, WJ
Chen, YH
Yang, YW
Qin, J
Hazen, SL
机构
[1] Cleveland Clin Fdn, Lerner Res Inst, Dept Cell Biol, Cleveland, OH 44195 USA
[2] Cleveland Clin Fdn, Dept Mol Cardiol, Cleveland, OH 44195 USA
[3] Cleveland Clin Fdn, Dept Cardiol, Cleveland, OH 44195 USA
[4] Cleveland State Univ, Dept Chem, Cleveland, OH 44115 USA
关键词
D O I
10.1021/bi001961t
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chronic parasitic infections are a major risk factor for cancer development in many underdeveloped countries. Oxidative damage of DNA may provide a mechanism linking these processes. Eosinophil recruitment is a hallmark of parasitic infections and many forms of cancer, and eosinophil peroxidase (EPO), a secreted hemoprotein, plays a central role in oxidant production by these cells. However, mechanisms through which EPO may facilitate DNA oxidation have not been fully characterized. Here, we show that EPO effectively uses plasma levels of bromide as a cosubstrate to brominate bases in nucleotides and double-stranded DNA, forming several stable novel brominated adducts. Products were characterized by HPLC with on-line UV spectroscopy and electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS). Ring assignments for brominated purine bases as their 8-bromo adducts were identified by NMR spectroscopy. Using stable isotope dilution LC/ESI/MS/MS, we show that while guanine is the preferred purine targeted for bromination as a free nucleobase, 8-bromoadenine is the major purine oxidation product generated following exposure of double-stranded DNA to either HOBr or the EPO/H2O2/Br(-)system. Bromination of nucleobases was inhibited by scavengers of hypohalous acids such as the thioether methionine, but not by a large molar excess of primary amines. Subsequently, N-monobromoamines were demonstrated to be effective brominating agents for both free nucleobases and adenine within intact DNA. A rationale for selective modification of adenine, but not guanine, in double-stranded DNA based upon stereochemical criteria is presented. Collectively, these results suggest that specific brominated DNA bases may serve as novel markers for monitoring oxidative damage of DNA and the nucleotide pool by brominating oxidants.
引用
收藏
页码:2041 / 2051
页数:11
相关论文
共 80 条
[1]   STUDIES ON MYELOPEROXIDASE ACTIVITY .1. SPECTROPHOTOMETRY OF MPO-H2O2 COMPOUND [J].
AGNER, K .
ACTA CHEMICA SCANDINAVICA, 1963, 17 :332-&
[2]   BIOLOGICAL REACTIVITY OF HYPOCHLOROUS ACID - IMPLICATIONS FOR MICROBICIDAL MECHANISMS OF LEUKOCYTE MYELOPEROXIDASE [J].
ALBRICH, JM ;
MCCARTHY, CA ;
HURST, JK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1981, 78 (01) :210-214
[3]   OXIDANTS, ANTIOXIDANTS, AND THE DEGENERATIVE DISEASES OF AGING [J].
AMES, BN ;
SHIGENAGA, MK ;
HAGEN, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :7915-7922
[4]   OXYGEN-DEPENDENT MICROBIAL KILLING BY PHAGOCYTES .1. [J].
BABIOR, BM .
NEW ENGLAND JOURNAL OF MEDICINE, 1978, 298 (12) :659-668
[5]   BIOLOGICAL DEFENSE MECHANISMS - PRODUCTION BY LEUKOCYTES OF SUPEROXIDE A POTENTIAL BACTERICIDAL AGENT [J].
BABIOR, BM ;
KIPNES, RS ;
CURNUTTE, JT .
JOURNAL OF CLINICAL INVESTIGATION, 1973, 52 (03) :741-744
[6]   PHAGOCYTOSIS-INDUCED MUTAGENESIS IN BACTERIA [J].
BARAK, M ;
ULITZUR, S ;
MERZBACH, D .
MUTATION RESEARCH, 1983, 121 (01) :7-16
[7]   DNA STRAND BREAKAGE IN HUMAN-LEUKOCYTES EXPOSED TO A TUMOR PROMOTER, PHORBOL-MYRISTATE ACETATE [J].
BIRNBOIM, HC .
SCIENCE, 1982, 215 (4537) :1247-1249
[8]   SOME PROPERTIES OF HUMAN EOSINOPHIL PEROXIDASE, A COMPARISON WITH OTHER PEROXIDASES [J].
BOLSCHER, BGJM ;
PLAT, H ;
WEVER, R .
BIOCHIMICA ET BIOPHYSICA ACTA, 1984, 784 (2-3) :177-186
[9]   8-nitro-2′-deoxyguanosine, a specific marker of oxidation by reactive nitrogen species, is generated by the myeloperoxidase hydrogen peroxide nitrite system of activated human phagocytes [J].
Byun, J ;
Henderson, JP ;
Mueller, DM ;
Heinecke, JW .
BIOCHEMISTRY, 1999, 38 (08) :2590-2600
[10]   FREE HYDROXYL RADICALS ARE FORMED ON REACTION BETWEEN THE NEUTROPHIL-DERIVED SPECIES SUPEROXIDE ANION AND HYPOCHLOROUS ACID [J].
CANDEIAS, LP ;
PATEL, KB ;
STRATFORD, MRL ;
WARDMAN, P .
FEBS LETTERS, 1993, 333 (1-2) :151-153