Activation of ERK induces phosphorylation of MAPK phosphatase-7, a JNK specific phosphatase, at Ser-446

被引:54
作者
Masuda, K [1 ]
Shima, H [1 ]
Katagiri, C [1 ]
Kikuchi, K [1 ]
机构
[1] Hokkaido Univ, Inst Med Genet,Div Biochem Oncol & Immunol, Sect Biochem Oncol & Immunol, Kita Ku, Sapporo, Hokkaido 0600815, Japan
关键词
D O I
10.1074/jbc.M213254200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We previously showed that MKP-7 suppresses MAPK activation in COS-7 cells in the order of selectivity, JNKmuch greater thanp38>ERK, but interacts with ERK as well as JNK and p38. In this study we found that, when expressed in COS-7 cells with HA-ERK2, the mobility of FLAG-MKP-7 was decreased on SDS-PAGE gels depending on several stimuli, including phorbol 12-myristate 13-acetate, fetal bovine serum, epidermal growth factor, H2O2, and ionomycin. By using U0126, a MEK inhibitor, and introducing several point mutations, we demonstrated that this upward mobility shift is because of phosphorylation and identified Ser-446 of MKP-7 as the phosphorylation site targeted by ERK activation. To determine how MKP-7 interacts with MAPKs, we identified three domains in MKP-7 required for interaction with MAPKs, namely, putative MAP kinase docking domains (D-domain) I and II and a long COOH-terminal stretch unique to MKP-7. The D-domain I is required for interaction with ERK and p38, whereas the D-domain II is required for interaction with JNK and p38, which is likely to be important for MKP-7 to suppress JNK and p38 activations. The COOH-terminal stretch of MKP-7 was shown to determine JNK preference for MKP-7 by masking MKP-7 activity toward p38 and is a domain bound by ERK. These data strongly suggested that Ser-446 of MKP-7 is phosphorylated by ERK.
引用
收藏
页码:32448 / 32456
页数:9
相关论文
共 57 条
[1]   Inhibitory role for dual specificity phosphatase VHR in T cell antigen receptor and CD28-induced Erk and Jnk activation [J].
Alonso, A ;
Saxena, M ;
Williams, S ;
Mustelin, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (07) :4766-4771
[2]   Cell cycle regulation by p38 MAP kinases [J].
Ambrosino, C ;
Nebreda, AR .
BIOLOGY OF THE CELL, 2001, 93 (1-2) :47-51
[3]   RETRACTED: Molecular cloning and characterization of a novel dual specificity phosphatase, LMW-DSP2, that lacks the Cdc25 homology domain (Retracted Article) [J].
Aoyama, K ;
Nagata, M ;
Oshima, K ;
Matsuda, T ;
Aoki, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (29) :27575-27583
[4]   A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission [J].
Bardwell, AJ ;
Flatauer, LJ ;
Matsukuma, K ;
Thorner, J ;
Bardwell, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (13) :10374-10386
[5]   Specificity determinants in MAPK signaling to transcription factors [J].
Barsyte-Lovejoy, D ;
Galanis, A ;
Sharrocks, AD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (12) :9896-9903
[6]   Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation [J].
Brondello, JM ;
Pouysségur, J ;
McKenzie, FR .
SCIENCE, 1999, 286 (5449) :2514-2517
[7]   Dual specificity phosphatases: a gene family for control of MAP kinase function [J].
Camps, M ;
Nichols, A ;
Arkinstall, S .
FASEB JOURNAL, 2000, 14 (01) :6-16
[8]   Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b [J].
Chang, CI ;
Xu, BE ;
Akella, R ;
Cobb, MH ;
Goldsmith, EJ .
MOLECULAR CELL, 2002, 9 (06) :1241-1249
[9]   Mammalian MAP kinase signalling cascades [J].
Chang, LF ;
Karin, M .
NATURE, 2001, 410 (6824) :37-40
[10]   Discordance between the binding affinity of mitogen-activated protein kinase subfamily members for MAP kinase phosphatase-2 and their ability to activate the phosphatase catalytically [J].
Chen, PL ;
Hutter, D ;
Yang, XL ;
Gorospe, M ;
Davis, RJ ;
Liu, YS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) :29440-29449