On the structure of the solutions of a two-parameter family of three-dimensional ordinary differential equations

被引:3
作者
Impram, ST
Johnson, R
Pavani, R
机构
[1] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
[2] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2003年 / 13卷 / 05期
关键词
three-dimensional ODEs; scroll structure; period-doubling; Hopf solutions;
D O I
10.1142/S0218127403007229
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze the global structure of the solutions of a three-dimensional, autonomous ordinary differential equation which depends on two parameters. We use graphical, heuristic, and rigorous arguments to show that as the parameters vary, a wide range of dynamical behavior is displayed.
引用
收藏
页码:1287 / 1298
页数:12
相关论文
共 14 条
[1]  
Abraham R. H., 1981, Dynamics-The geometry of behavior, V3rd ed
[2]  
[Anonymous], 1998, AUTO 97 CONTINUATION
[3]   ONE PARAMETER BIFURCATION DIAGRAM FOR CHUAS CIRCUIT [J].
BROUCKE, M .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1987, 34 (02) :208-209
[4]   THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS [J].
CHUA, LO ;
KOMURO, M ;
MATSUMOTO, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1072-1097
[5]  
GAUDENZI M, 2000, COMMUNICATION
[6]   HARMONIC-BALANCE METHODS FOR THE ANALYSIS OF CHAOTIC DYNAMICS IN NONLINEAR-SYSTEMS [J].
GENESIO, R ;
TESI, A .
AUTOMATICA, 1992, 28 (03) :531-548
[7]  
Hirsch MW., 1977, LECT NOTES MATH, DOI 10.1007/BFb0092042
[8]  
Kuznetsov Y., 1998, ELEMENTS APPL BIFURC
[9]   STEADY SOLUTIONS OF THE KURAMOTO SIVASHINSKY EQUATION [J].
MICHELSON, D .
PHYSICA D, 1986, 19 (01) :89-111
[10]  
Nemytskii V.V., 1960, QUALITATIVE THEORY O