The p38α/β MAPK functions as a molecular switch to activate the quiescent satellite cell

被引:195
作者
Jones, NC
Tyner, KJ
Nibarger, L
Stanley, HM
Cornelison, DDW
Fedorov, YV
Olwin, BB [1 ]
机构
[1] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA
[2] Dharmacon Res, Lafayette, CO 80026 USA
[3] Bayer Corp, Res Triangle Pk, NC 27709 USA
关键词
D O I
10.1083/jcb.200408066
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Somatic stem cells cycle slowly or remain quiescent until required for tissue repair and maintenance. Upon muscle injury, stem cells that lie between the muscle fiber and basal lamina (satellite cells) are activated, proliferate, and eventually differentiate to repair the damaged muscle. Satellite cells in healthy muscle are quiescent, do not express MyoD family transcription factors or cell cycle regulatory genes and are insulated from the surrounding environment. Here, we report that the p38 alpha/beta family of mitogen-activated protein kinases (MAPKs) reversibly regulates the quiescent state of the skeletal muscle satellite cell. Inhibition of p38 alpha/beta MAPKs (a) promotes exit from the cell cycle, (b) prevents differentiation, and (c) insulates the cell from most external stimuli allowing the satellite cell to maintain a quiescent state. Activation of satellite cells and p38 alpha/beta MAPKs occurs concomitantly, providing further support that these MAPKs function as a molecular switch for satellite cell activation.
引用
收藏
页码:105 / 116
页数:12
相关论文
共 52 条
[1]   Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases [J].
Bennett, AM ;
Tonks, NK .
SCIENCE, 1997, 278 (5341) :1288-1291
[2]   PROLIFERATION OF MUSCLE SATELLITE CELLS ON INTACT MYOFIBERS IN CULTURE [J].
BISCHOFF, R .
DEVELOPMENTAL BIOLOGY, 1986, 115 (01) :129-139
[3]   DIFFERENTIAL ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASE IN RESPONSE TO BASIC FIBROBLAST GROWTH-FACTOR IN SKELETAL-MUSCLE CELLS [J].
CAMPBELL, JS ;
WENDEROTH, MP ;
HAUSCHKA, SD ;
KREBS, EG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (03) :870-874
[4]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P159
[5]   GROWTH-FACTOR CONTROL OF SKELETAL-MUSCLE DIFFERENTIATION - COMMITMENT TO TERMINAL DIFFERENTIATION OCCURS IN G1 PHASE AND IS REPRESSED BY FIBROBLAST GROWTH-FACTOR [J].
CLEGG, CH ;
LINKHART, TA ;
OLWIN, BB ;
HAUSCHKA, SD .
JOURNAL OF CELL BIOLOGY, 1987, 105 (02) :949-956
[6]   The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways [J].
Coolican, SA ;
Samuel, DS ;
Ewton, DZ ;
McWade, FJ ;
Florini, JR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (10) :6653-6662
[7]   Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration [J].
Cornelison, DDW ;
Wilcox-Adelman, SA ;
Goetinck, PF ;
Rauvala, H ;
Rapraeger, AC ;
Olwin, BB .
GENES & DEVELOPMENT, 2004, 18 (18) :2231-2236
[8]   Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells [J].
Cornelison, DDW ;
Wold, BJ .
DEVELOPMENTAL BIOLOGY, 1997, 191 (02) :270-283
[9]   Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration [J].
Cornelison, DDW ;
Filla, MS ;
Stanley, HM ;
Rapraeger, AC ;
Olwin, BB .
DEVELOPMENTAL BIOLOGY, 2001, 239 (01) :79-94
[10]   MyoD-/- satellite cells in single-fiber culture are differentiation defective and MRF4 deficient [J].
Cornelison, DDW ;
Olwin, BB ;
Rudnicki, MA ;
Wold, BJ .
DEVELOPMENTAL BIOLOGY, 2000, 224 (02) :122-137