Dynamics of the interaction between a fibronectin molecule and a living bacterium under mechanical force

被引:86
作者
Bustanji, Y
Arciola, CR
Conti, M
Mandello, E
Montanaro, L
Samorí, B
机构
[1] Ist Ortoped Rizzoli, Lab Biocompatibilita Mat Impianto, I-40136 Bologna, Italy
[2] Univ Bologna, Dipartimento Biochim, I-40126 Bologna, Italy
[3] Ist Nazl Fis Mat, Bologna, Italy
[4] Univ Bologna, Dipartimento Patol Sperimentale, I-40126 Bologna, Italy
关键词
D O I
10.1073/pnas.1735343100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fibronectin (Fn) is an important mediator of bacterial invasions and of persistent infections like that of Staphylococcus epidermis. Similar to many other types of cell-protein adhesion, the binding between Fn and S. epidermidis takes place under physiological shear rates. We investigated the dynamics of the interaction between individual living S. epidermidis cells and single Fn mole cules under mechanical force by using the scanning force microscope. The mechanical strength of this interaction and the binding site in the Fn molecule were determined. The energy landscape of the binding/unbinding process was mapped, and the force spectrum and the association and dissociation rate constants of the binding pair were measured. The interaction between S. epidermidis cells and Fn molecules is compared with those of two other protein/ligand pairs known to mediate different dynamic states of adhesion of cells under a hydrodynamic flow: the firm adhesion mediated by biotin/avidin interactions, and the rolling adhesion, mediated by L-selectin/P-selectin glycoprotein ligand-1 interactions. The inner barrier in the energy landscape of the Fn case characterizes a high-energy binding mode that can sustain larger deformations and for significantly longer times than the correspondent high-strength L-selectin/P-selectin glycoprotein ligand-1 binding mode. The association kinetics of the former interaction is much slower to settle than the latter. On this basis, the observations made at the macroscopic scale by other authors of a strong lability of the bacterial adhesions mediated by Fn under high turbulent flow are rationalized at the molecular level.
引用
收藏
页码:13292 / 13297
页数:6
相关论文
共 38 条
[1]   The kinetics and shear threshold of transient and rolling interactions of L-selectin with its ligand on leukocytes [J].
Alon, R ;
Chen, SQ ;
Fuhlbrigge, R ;
Puri, KD ;
Springer, TA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (20) :11631-11636
[2]   Data analysis of interaction forces measured with the atomic force microscope [J].
Baumgartner, W ;
Hinterdorfer, P ;
Schindler, H .
ULTRAMICROSCOPY, 2000, 82 (1-4) :85-95
[3]  
BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
[4]   The state diagram for cell adhesion under flow: Leukocyte rolling and firm adhesion [J].
Chang, KC ;
Tees, DFJ ;
Hammer, DA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11262-11267
[5]   Selectin receptor-ligand bonds: Formation limited by shear rate and dissociation governed by the Bell model [J].
Chen, SQ ;
Springer, TA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (03) :950-955
[6]  
Conti M, 2001, CHEMPHYSCHEM, V2, P610, DOI 10.1002/1439-7641(20011015)2:10<610::AID-CPHC610>3.0.CO
[7]  
2-6
[8]   Differences in zero-force and force-driven kinetics of ligand dissociation from β-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy [J].
Dettmann, W ;
Grandbois, M ;
André, S ;
Benoit, M ;
Wehle, AK ;
Kaltner, H ;
Gabius, HJ ;
Gaub, HE .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 383 (02) :157-170
[9]   Dynamic strength of molecular adhesion bonds [J].
Evans, E ;
Ritchie, K .
BIOPHYSICAL JOURNAL, 1997, 72 (04) :1541-1555
[10]   Strength of a weak bond connecting flexible polymer chains [J].
Evans, E ;
Ritchie, K .
BIOPHYSICAL JOURNAL, 1999, 76 (05) :2439-2447