Sphingomyelin-enriched microdomains at the Golgi complex

被引:141
作者
Gkantiragas, I
Brügger, B
Stüven, E
Kaloyanova, D
Li, XY
Löhr, K
Lottspeich, F
Wieland, FT
Helms, JB
机构
[1] Heidelberg Univ, BZH, D-69120 Heidelberg, Germany
[2] Max Planck Inst Biochem, D-82152 Martinsried, Germany
关键词
D O I
10.1091/mbc.12.6.1819
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Sphingomyelin- and cholesterol-enriched microdomains can be isolated as detergent-resistant membranes from total cell extracts (total-DRM). It is generally believed that this total-DRM represents microdomains of the plasma membrane. Here we describe the purification and detailed characterization of microdomains from Golgi membranes. These Golgi-derived detergent-insoluble complexes (GICs) have a low buoyant density and are highly enriched in lipids, containing 25% of total Golgi phospholipids including 67% of Golgi-derived sphingomyelin, and 43% of Golgi-derived cholesterol. In contrast to total-DRM, GICs contain only 10 major proteins, present in nearly stoichiometric amounts, including the alpha- and beta -subunits of heterotrimeric G proteins, flotillin-1, caveolin, and subunits of the vacuolar ATPase. Morphological data show a brefeldin A-sensitive and temperature-sensitive localization to the Golgi complex. Strikingly, the stability of GICs does not depend on its membrane environment, because, after addition of brefeldin A to cells, GICs can be isolated from a fused Golgi-endoplasmic reticulum. organelle. This indicates that GIC microdomains are not in a dynamic equilibrium with neighboring membrane proteins and lipids. After disruption of the microdomains by cholesterol extraction with cyclodextrin, a subcomplex of several GIC proteins including the B-subunit of the vacuolar ATPase, flotillin-1, caveolin, and p17 could still be isolated by immunoprecipitation. This indicates that several of the identified GIC proteins localize to the same microdomains and that the microdomain scaffold is not required for protein interactions between these GIC proteins but instead might modulate their affinity.
引用
收藏
页码:1819 / 1833
页数:15
相关论文
共 76 条
[1]   The caveolae membrane system [J].
Anderson, RGW .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :199-225
[2]   Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast [J].
Bagnat, M ;
Keränen, S ;
Shevchenko, A ;
Shevchenko, A ;
Simons, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3254-3259
[3]   RECONSTITUTION OF THE TRANSPORT OF PROTEIN BETWEEN SUCCESSIVE COMPARTMENTS OF THE GOLGI MEASURED BY THE COUPLED INCORPORATION OF N-ACETYLGLUCOSAMINE [J].
BALCH, WE ;
DUNPHY, WG ;
BRAELL, WA ;
ROTHMAN, JE .
CELL, 1984, 39 (02) :405-416
[4]   Flotillin and epidermal surface antigen define a new family of caveolae-associated integral membrane proteins [J].
Bickel, PE ;
Scherer, PE ;
Schnitzer, JE ;
Oh, P ;
Lisanti, MP ;
Lodish, HF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (21) :13793-13802
[5]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[6]   ROLE OF HETEROTRIMERIC-G PROTEINS IN MEMBRANE TRAFFIC [J].
BOMSEL, M ;
MOSTOV, K .
MOLECULAR BIOLOGY OF THE CELL, 1992, 3 (12) :1317-1328
[7]   CHOLESTEROL AND THE GOLGI-APPARATUS [J].
BRETSCHER, MS ;
MUNRO, S .
SCIENCE, 1993, 261 (5126) :1280-1281
[8]   SORTING OF GPI-ANCHORED PROTEINS TO GLYCOLIPID-ENRICHED MEMBRANE SUBDOMAINS DURING TRANSPORT TO THE APICAL CELL-SURFACE [J].
BROWN, DA ;
ROSE, JK .
CELL, 1992, 68 (03) :533-544
[9]   Structure and origin of ordered lipid domains in biological membranes [J].
Brown, DA ;
London, E .
JOURNAL OF MEMBRANE BIOLOGY, 1998, 164 (02) :103-114
[10]   Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles [J].
Brügger, B ;
Sandhoff, R ;
Wegehingel, S ;
Gorgas, K ;
Malsam, J ;
Helms, JB ;
Lehmann, WD ;
Nickel, W ;
Wieland, FT .
JOURNAL OF CELL BIOLOGY, 2000, 151 (03) :507-517