Simple mixture model for sparse overcomplete ICA

被引:48
作者
Davies, M [1 ]
Mitianoudis, N [1 ]
机构
[1] Queen Mary Univ London, London E1 4NS, England
来源
IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING | 2004年 / 151卷 / 01期
关键词
D O I
10.1049/ip-vis:20040304
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The use of mixture of Gaussians (MoGs) for noisy and overcomplete independent component analysis (ICA) when the source distributions are very sparse is explored. The sparsity model can often be justified if an appropriate transform, such as the modified discrete cosine transform, is used. Given the sparsity assumption, a number of simplifying approximations are introduced to the observation density that avoid the exponential growth of mixture components. An efficient clustering algorithm is derived whose complexity grows linearly with the number of sources and it is shown that it is capable of performing reasonable separation.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 22 条
[1]  
[Anonymous], 1997, A Wavelet Tour of Signal Processing
[2]   Independent factor analysis [J].
Attias, H .
NEURAL COMPUTATION, 1999, 11 (04) :803-851
[3]  
BERMOND O, 1999, P ICA AUSS FRANC JAN
[4]  
Brandenburg K., 1999, AUDIO ENG SOC C 17 I
[5]   Infomax and maximum likelihood for blind source separation [J].
Cardoso, JF .
IEEE SIGNAL PROCESSING LETTERS, 1997, 4 (04) :112-114
[6]   Blind signal separation: Statistical principles [J].
Cardoso, JF .
PROCEEDINGS OF THE IEEE, 1998, 86 (10) :2009-2025
[7]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[8]   Wavelet-based statistical signal processing using hidden Markov models [J].
Crouse, MS ;
Nowak, RD ;
Baraniuk, RG .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (04) :886-902
[9]  
DAVIES ME, 2002, MATH SIGNAL PROCESSI, V5
[10]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38