Dual Inhibition of PI3K and mTORC1/2 Signaling by NVP-BEZ235 as a New Therapeutic Strategy for Acute Myeloid Leukemia

被引:134
作者
Chapuis, Nicolas [2 ,3 ]
Tamburini, Jerome [2 ,4 ]
Green, Alexa S. [2 ]
Vignon, Christine [5 ]
Bardet, Valerie [2 ,3 ]
Neyret, Aymeric [2 ]
Pannetier, Melanie [2 ]
Willems, Lise [2 ,4 ]
Park, Sophie [2 ,4 ]
Macone, Alexandre [2 ]
Maira, Sauveur-Michel [7 ]
Ifrah, Norbert [8 ]
Dreyfus, Francois [2 ,4 ]
Herault, Olivier [6 ]
Lacombe, Catherine [2 ,3 ]
Mayeux, Patrick [2 ]
Bouscary, Didier [1 ,2 ,4 ]
机构
[1] Univ Paris 05, Inst Cochin, Dept Hematol Immunol, CNRS,UMR8104, F-75014 Paris, France
[2] INSERM, U1016, Paris, France
[3] Hop Cochin, AP HP, Serv Hematol Biol, F-75674 Paris, France
[4] Hop Cochin, AP HP, Serv Med Interne UF Hematol, F-75674 Paris, France
[5] Univ Tours, UPRES EA3855, Tours, France
[6] CHRU Tours, Serv Hematol Biol, Tours, France
[7] Novartis Inst Biomed Res, Basel, Switzerland
[8] CHU Angers, Serv Malad Sang, Angers, France
关键词
PHOSPHATIDYLINOSITOL 3-KINASE/MAMMALIAN TARGET; MAMMALIAN TARGET; TRANSLATION INITIATION; ANTILEUKEMIC ACTIVITY; RAPAMYCIN INHIBITOR; CELL-PROLIFERATION; P110-DELTA ISOFORM; BINDING PARTNER; PROTEIN-KINASE; COMPLEX;
D O I
10.1158/1078-0432.CCR-10-1102
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: The growth and survival of acute myeloid leukemia (AML) cells are enhanced by the deregulation of signaling pathways such as phosphoinositide 3-kinase (PI3K)/Akt and mammalian target of rapamycin (mTOR). Major efforts have thus been made to develop molecules targeting these activated pathways. The mTOR serine/threonine kinase belongs to two separate complexes: mTORC1 and mTORC2. The mTORC1 pathway is rapamycin sensitive and controls protein translation through the phosphorylation of 4E-BP1 in most models. In AML, however, the translation process is deregulated and rapamycin resistant. Furthermore, the activity of PI3K/Akt and mTOR is closely related, as mTORC2 activates the oncogenic kinase Akt. We therefore tested, in this study, the antileukemic activity of the dual PI3K/mTOR ATP-competitive inhibitor NVP-BEZ235 compound (Novartis). Experimental Design: The activity of NVP-BEZ235 was tested in primary AML samples (n = 21) and human leukemic cell lines. The different signaling pathways were analyzed by Western blotting. The cap-dependent mRNA translation was studied by 7-methyl-GTP pull-down experiments, polysomal analysis, and [H-3] leucine incorporation assays. The antileukemic activity of NVP-BEZ235 was tested by analyzing its effects on leukemic progenitor clonogenicity, blast cell proliferation, and survival. Results: The NVP-BEZ235 compound was found to inhibit PI3K and mTORC1 signaling and also mTORC2 activity. Furthermore, NVP-BEZ235 fully inhibits the rapamycin-resistant phosphorylation of 4E-BP1, resulting in a marked inhibition of protein translation in AML cells. Hence, NVP-BEZ235 reduces the proliferation rate and induces an important apoptotic response in AML cells without affecting normal CD34(+) survival. Conclusions: Our results clearly show the antileukemic efficiency of the NVP-BEZ235 compound, which therefore represents a promising option for future AML therapies. Clin Cancer Res; 16(22); 5424-35. (C) 2010 AACR.
引用
收藏
页码:5424 / 5435
页数:12
相关论文
共 50 条
[1]   Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38 [J].
Bai, Xiaochun ;
Ma, Dongzhu ;
Liu, Anling ;
Shen, Xiaoyun ;
Wang, Qiming J. ;
Liu, Yongjian ;
Jiang, Yu .
SCIENCE, 2007, 318 (5852) :977-980
[2]   Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/Akt/mTOR-addicted lymphomas [J].
Bhatt, Aadra P. ;
Bhende, Prasanna M. ;
Sin, Sang-Hoon ;
Roy, Debasmita ;
Dittmer, Dirk P. ;
Damania, Blossom .
BLOOD, 2010, 115 (22) :4455-4463
[3]   A selective inhibitor of the p110δ isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16 [J].
Billottet, C. ;
Grandage, V. L. ;
Gale, R. E. ;
Quattropani, A. ;
Rommel, C. ;
Vanhaesebroeck, B. ;
Khwaja, A. .
ONCOGENE, 2006, 25 (50) :6648-6659
[4]   Activity of a novel, dual PI3-kinase/mTor inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts [J].
Cao, P. ;
Maira, S-M ;
Garcia-Echeverria, C. ;
Hedley, D. W. .
BRITISH JOURNAL OF CANCER, 2009, 100 (08) :1267-1276
[5]   Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody [J].
Chapuis, Nicolas ;
Tamburini, Jerome ;
Cornillet-Lefebvre, Pascale ;
Gillot, Lucile ;
Bardet, Valerie ;
Willems, Lise ;
Park, Sophie ;
Green, Alexa S. ;
Ifrah, Norbert ;
Dreyfus, Francois ;
Mayeux, Patrick ;
Lacombe, Catherine ;
Bouscary, Didier .
HAEMATOLOGICA-THE HEMATOLOGY JOURNAL, 2010, 95 (03) :415-423
[6]   Targets and mechanisms for the regulation of translation in malignant transformation [J].
Clemens, MJ .
ONCOGENE, 2004, 23 (18) :3180-3188
[7]   In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation [J].
Collins, BJ ;
Deak, M ;
Arthur, JSC ;
Armit, LJ ;
Alessi, DR .
EMBO JOURNAL, 2003, 22 (16) :4202-4211
[8]   TORC-Specific Phosphorylation of Mammalian Target of Rapamycin (mTOR): Phospho-Ser2481 Is a Marker for Intact mTOR Signaling Complex 2 [J].
Copp, Jeremy ;
Manning, Gerard ;
Hunter, Tony .
CANCER RESEARCH, 2009, 69 (05) :1821-1827
[9]   Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2 [J].
Feldman, Morris E. ;
Apsel, Beth ;
Uotila, Aino ;
Loewith, Robbie ;
Knight, Zachary A. ;
Ruggero, Davide ;
Shokat, Kevan M. .
PLOS BIOLOGY, 2009, 7 (02) :371-383
[10]   Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR) [J].
Garcia-Martinez, Juan M. ;
Moran, Jennifer ;
Clarke, Rosemary G. ;
Gray, Alex ;
Cosulich, Sabina C. ;
Chresta, Christine M. ;
Alessi, Dario R. .
BIOCHEMICAL JOURNAL, 2009, 421 :29-42