Translocation of polymers with folded configurations across nanopores

被引:16
作者
Kotsev, Stanislav [1 ]
Kolomeisky, Anatoly B. [1 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2800008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The transport of polymers with folded configurations across membrane pores is investigated theoretically by analyzing simple discrete stochastic models. The translocation dynamics is viewed as a sequence of two events: motion of the folded segment through the channel followed by the linear part of the polymer. The transition rates vary for the folded and linear segments because of different interactions between the polymer molecule and the pore. It is shown that the translocation time depends nonmonotonously on the length of the folded segment for short polymers and weak external fields, while it becomes monotonous for long molecules and large fields. Also, there is a critical interaction between the polymers and the pore that separates two dynamic regimes. For stronger interactions, the folded polymer moves slower, while for weaker interactions, the linear chain translocation is the fastest. In addition, our calculations show that the folding does not change the translocation scaling properties of the polymer. These phenomena can be explained by the interplay between translocation distances and transition rates for the folded and linear segments of the polymer. Our theoretical results are applied for analysis of experimental translocations through solid-state nanopores.
引用
收藏
页数:7
相关论文
共 47 条
[1]   Charged polymer membrane translocation [J].
Ambjörnsson, T ;
Apell, SP ;
Konkoli, Z ;
Di Marzio, EA ;
Kasianowicz, JJ .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (08) :4063-4073
[2]   Dynamics of DNA molecules in a membrane channel probed by active control techniques [J].
Bates, M ;
Burns, M ;
Meller, A .
BIOPHYSICAL JOURNAL, 2003, 84 (04) :2366-2372
[3]   Coupled dynamics of RNA folding and nanopore translocation [J].
Bundschuh, R ;
Gerland, U .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)
[4]   Determination of RNA orientation during translocation through a biological nanopore [J].
Butler, TZ ;
Gundlach, JH ;
Troll, MA .
BIOPHYSICAL JOURNAL, 2006, 90 (01) :190-199
[5]   Three-dimensional dynamic Monte Carlo simulations of driven polymer transport through a hole in a wall [J].
Chern, SS ;
Cárdenas, AE ;
Coalson, RD .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (16) :7772-7782
[6]  
Chuang J., 2001, Phys. Rev. E, V65, DOI DOI 10.1103/PHYSREVE.65.011802
[7]   Solid-state nanopores [J].
Dekker, Cees .
NATURE NANOTECHNOLOGY, 2007, 2 (04) :209-215
[8]   Driven polymer translocation through a nanopore: A manifestation of anomalous diffusion [J].
Dubbeldam, J. L. A. ;
Milchev, A. ;
Rostiashvili, V. G. ;
Vilgis, T. A. .
EPL, 2007, 79 (01)
[9]   Single stranded DNA translocation through a nanopore: A master equation approach [J].
Flomenbom, O ;
Klafter, J .
PHYSICAL REVIEW E, 2003, 68 (04)
[10]   Langevin dynamics simulations of ds-DNA translocation through synthetic nanopores [J].
Forrey, Christopher ;
Muthukumar, M. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (01)