Exponential synchronization of nonlinear coupled dynamical networks

被引:31
作者
Chen, Tianping [1 ]
Zhu, Zhimiao [1 ]
机构
[1] Fudan Univ, Inst Math, Lab Nonlinear Math Sci, Shanghai 200433, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2007年 / 17卷 / 03期
基金
美国国家科学基金会;
关键词
dynamical networks; synchronization manifold; stability of synchronization manifold; nonlinear coupling;
D O I
10.1142/S0218127407017719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss exponential synchronization of nonlinear coupled dynamical networks. Sufficient conditions for both local and global exponential synchronization are given. These conditions indicate that the left and right eigenvectors corresponding to eigenvalue zero of the coupling matrix play key roles in the stability analysis of the synchronization manifold.
引用
收藏
页码:999 / 1005
页数:7
相关论文
共 11 条
[1]   Synchronization of chaotic systems: Transverse stability of trajectories in invariant manifolds [J].
Brown, R ;
Rulkov, NF .
CHAOS, 1997, 7 (03) :395-413
[2]   Synchronization of unidirectional coupled chaotic systems via partial stability [J].
Ge, ZM ;
Chen, YS .
CHAOS SOLITONS & FRACTALS, 2004, 21 (01) :101-111
[3]  
Horn P., 1985, Matrix Analysis
[4]   New approach to synchronization analysis of linearly coupled ordinary differential systems [J].
Lu, WL ;
Chen, TP .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 213 (02) :214-230
[5]   Synchronization of coupled connected neural networks with delays [J].
Lu, WL ;
Chen, TP .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (12) :2491-2503
[6]  
Miller RK, 1982, ORDINARY DIFFERENTIA
[7]  
MINC H, 1988, NONNEQATIVE MATRICES
[8]   Synchronization in scale-free dynamical networks: Robustness and fragility [J].
Wang, XF ;
Chen, GR .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2002, 49 (01) :54-62
[9]   Synchronization in small-world dynamical networks [J].
Wang, XF ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (01) :187-192
[10]   SYNCHRONIZATION IN AN ARRAY OF LINEARLY COUPLED DYNAMICAL-SYSTEMS [J].
WU, CW ;
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08) :430-447