Properties of the Escherichia coli rhodanese-like protein SseA:: contribution of the active-site residue Ser240 to sulfur donor recognition

被引:26
作者
Colnaghi, R
Cassinelli, G
Drummond, M
Forlani, F
Pagani, S
机构
[1] Univ Milan, Dipartimento Sci Mol Agroalimentari, I-20133 Milan, Italy
[2] John Innes Ctr Plant Sci Res, Nitrogen Fixat Lab, Norwich NR4 7UH, Norfolk, England
关键词
rhodanese-like protein; substrate selectivity; structural requirement; Escherichia coli;
D O I
10.1016/S0014-5793(01)02610-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The product of Escherichia coli sseA gene (SseA) was the subject of the present investigation aimed to provide a tool for functional classification of the bacterial proteins of the rhodanese family. E. coli SseA contains the motif CGSGVTA around the catalytic cysteine (Cys238), In eukaryotic sulfurtransferases this motif discriminates for 3-mercaptopyruvate:cyanide sulfurtransferase over thiosulfate:cyanide sulfurtransferases (rhodanese), The biochemical characterization of E. coli SseA allowed the identification of the first prokaryotic protein with a preference for 3-mercaptopyruvate as donor substrate. Replacement of Ser240 with Ala showed that the presence of a hydrophobic residue did not affect the binding of 3-mercaptopyruvate, but strongly prevented thiosulfate binding. On the contrary, substitution of Ser240 with an ionizable residue (Lys) increased the affinity for thiosulfate. (C) 2001 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:153 / 156
页数:4
相关论文
共 26 条
[1]   The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families [J].
Bordo, D ;
Deriu, D ;
Colnaghi, R ;
Carpen, A ;
Pagani, S ;
Bolognesi, M .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (04) :691-704
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]   ACTIVE-SITE MODIFICATIONS QUENCH INTRINSIC FLUORESCENCE OF RHODANESE BY DIFFERENT MECHANISMS [J].
CANNELLA, C ;
BERNI, R ;
ROSATO, N ;
FINAZZIAGRO, A .
BIOCHEMISTRY, 1986, 25 (23) :7319-7323
[4]   Structure of sulfur-substituted rhodanese at 1.36 Å resolution [J].
Gliubich, F ;
Berni, R ;
Colapietro, M ;
Barba, L ;
Zanotti, G .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1998, 54 :481-486
[5]   ENHANCEMENT OF SERINE-SENSITIVITY BY A GENE ENCODING RHODANESE-LIKE PROTEIN IN ESCHERICHIA-COLI [J].
HAMA, H ;
KAYAHARA, T ;
OGAWA, W ;
TSUDA, M ;
TSUCHIYA, T .
JOURNAL OF BIOCHEMISTRY, 1994, 115 (06) :1135-1140
[6]  
HOROWITZ P, 1983, J BIOL CHEM, V258, P7894
[7]  
Jarabak R, 1981, Methods Enzymol, V77, P291
[8]   3-MERCAPTOPYRUVATE SULFURTRANSFERASE - RAPID EQUILIBRIUM-ORDERED MECHANISM WITH CYANIDE AS THE ACCEPTOR SUBSTRATE [J].
JARABAK, R ;
WESTLEY, J .
BIOCHEMISTRY, 1980, 19 (05) :900-904
[9]   STEADY-STATE KINETICS OF 3-MERCAPTOPYRUVATE SULFUR TRANSFERASE FROM BOVINE KIDNEY [J].
JARABAK, R ;
WESTLEY, J .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1978, 185 (02) :458-465
[10]  
LUO GX, 1994, J BIOL CHEM, V269, P8220