Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications

被引:912
作者
Hoang Hiep Nguyen [1 ,2 ]
Park, Jeho [1 ,2 ]
Kang, Sebyung [3 ]
Kim, Moonil [1 ,2 ,4 ]
机构
[1] KRIBB, BioNanotechnol Res Ctr, Taejon 305806, South Korea
[2] Korea Univ Sci & Technol UST, Dept Nanobiotechnol, Taejon 305350, South Korea
[3] UNIST, Dept Biol Sci, Sch Life Sci, Ulsan 689798, South Korea
[4] Tuskegee Univ, Dept Pathobiol, Coll Vet Med Nursing & Allied Hlth CVMNAH, Tuskegee, AL 36088 USA
来源
SENSORS | 2015年 / 15卷 / 05期
关键词
surface plasmon resonance; SPR; biosensor; SPR imaging; applications; ROLLING CIRCLE AMPLIFICATION; QUARTZ-CRYSTAL MICROBALANCE; SUPPORTED LIPID MONOLAYER; SELF-ASSEMBLED MONOLAYERS; DNA-BINDING DOMAIN; C-REACTIVE PROTEIN; REAL-TIME; LABEL-FREE; IMAGING MEASUREMENTS; KINETIC-ANALYSIS;
D O I
10.3390/s150510481
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Surface plasmon resonance (SPR) is a label-free detection method which has emerged during the last two decades as a suitable and reliable platform in clinical analysis for biomolecular interactions. The technique makes it possible to measure interactions in real-time with high sensitivity and without the need of labels. This review article discusses a wide range of applications in optical-based sensors using either surface plasmon resonance (SPR) or surface plasmon resonance imaging (SPRI). Here we summarize the principles, provide examples, and illustrate the utility of SPR and SPRI through example applications from the biomedical, proteomics, genomics and bioengineering fields. In addition, SPR signal amplification strategies and surface functionalization are covered in the review.
引用
收藏
页码:10481 / 10510
页数:30
相关论文
共 143 条
[1]   Total internal reflection ellipsometry: principles and applications [J].
Arwin, H ;
Poksinski, M ;
Johansen, K .
APPLIED OPTICS, 2004, 43 (15) :3028-3036
[2]   Surface plasmon resonance characterization of drug/liposome interactions [J].
Baird, CL ;
Courtenay, ES ;
Myszka, DG .
ANALYTICAL BIOCHEMISTRY, 2002, 310 (01) :93-99
[3]  
Baron O.L., 2014, Bio Protoc, V4, P1
[4]   Surface plasmon resonance (SPR) sensors for the rapid, sensitive detection of the cellular response to osmotic stress [J].
Baumgarten, S. ;
Robelek, R. .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 156 (02) :798-804
[5]   SPR studies of carbohydrate-protein interactions: Signal enhancement of low-molecular-mass analytes by organoplatinum(II)-labeling [J].
Beccati, D ;
Halkes, KM ;
Batema, GD ;
Guillena, G ;
de Souza, AC ;
van Koten, G ;
Kamerling, JP .
CHEMBIOCHEM, 2005, 6 (07) :1196-1203
[6]   Surface plasmon resonance in protein-membrane interactions [J].
Besenicar, Mojca ;
Macek, Peter ;
Lakey, Jeremy H. ;
Anderluh, Gregor .
CHEMISTRY AND PHYSICS OF LIPIDS, 2006, 141 (1-2) :169-178
[7]   Development of an optical RNA-based aptasensor for C-reactive protein [J].
Bini, A. ;
Centi, S. ;
Tombelli, S. ;
Minunni, M. ;
Mascini, M. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2008, 390 (04) :1077-1086
[8]   DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor [J].
Boozer, C ;
Ladd, J ;
Chen, SF ;
Jiang, ST .
ANALYTICAL CHEMISTRY, 2006, 78 (05) :1515-1519
[9]  
Buijs Jos, 2005, Briefings in Functional Genomics & Proteomics, V4, P39, DOI 10.1093/bfgp/4.1.39
[10]   Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development [J].
Caruso, F ;
Rodda, E ;
Furlong, DF ;
Niikura, K ;
Okahata, Y .
ANALYTICAL CHEMISTRY, 1997, 69 (11) :2043-2049