Niche-independent symmetrical self-renewal of a mammalian tissue stem cell

被引:679
作者
Conti, L
Pollard, SM
Gorba, T
Reitano, E
Toselli, M
Biella, G
Sun, YR
Sanzone, S
Ying, QL
Cattaneo, E
Smith, A [1 ]
机构
[1] Univ Edinburgh, Inst Stem Cell Res, Edinburgh, Midlothian, Scotland
[2] Univ Milan, Dept Pharmacol Sci, Milan, Italy
[3] Univ Milan, Ctr Excellence Neurodegenerat Dis, Milan, Italy
[4] Univ Pavia, Inst Physiol & Pharmacol Sci, I-27100 Pavia, Italy
来源
PLOS BIOLOGY | 2005年 / 3卷 / 09期
基金
英国惠康基金;
关键词
D O I
10.1371/journal.pbio.0030283
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pluripotent mouse embryonic stem (ES) cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive. Neural progenitor cells are propagated in combination with differentiating progeny in floating clusters called neurospheres. The proportion of stem cells in neurospheres is low, however, and they cannot be directly observed or interrogated. Here we demonstrate that the complex neurosphere environment is dispensable for stem cell maintenance, and that the combination of fibroblast growth factor 2 (FGF-2) and epidermal growth factor (EGF) is sufficient for derivation and continuous expansion by symmetrical division of pure cultures of neural stem (NS) cells. NS cells were derived first from mouse ES cells. Neural lineage induction was followed by growth factor addition in basal culture media. In the presence of only EGF and FGF-2, resulting NS cells proliferate continuously, are diploid, and clonogenic. After prolonged expansion, they remain able to differentiate efficiently into neurons and astrocytes in vitro and upon transplantation into the adult brain. Colonies generated from single NS cells all produce neurons upon growth factor withdrawal. NS cells uniformly express morphological, cell biological, and molecular features of radial glia, developmental precursors of neurons and glia. Consistent with this profile, adherent NS cell lines can readily be established from foetal mouse brain. Similar NS cells can be generated from human ES cells and human foetal brain. The extrinsic factors EGF plus FGF-2 are sufficient to sustain pure symmetrical self-renewing divisions of NS cells. The resultant cultures constitute the first known example of tissue-specific stem cells that can be propagated without accompanying differentiation. These homogenous cultures will enable delineation of molecular mechanisms that define a tissue-specific stem cell and allow direct comparison with pluripotent ES cells.
引用
收藏
页码:1594 / 1606
页数:13
相关论文
共 74 条
  • [1] Alvarez-Buylla A, 2004, RES PER NEUROSCI, P43
  • [2] A unified hypothesis on the lineage of neural stem cells
    Alvarez-Buylla, A
    García-Verdugo, JM
    Tramontin, AD
    [J]. NATURE REVIEWS NEUROSCIENCE, 2001, 2 (04) : 287 - 293
  • [3] [Anonymous], 1989, REV GUIDANCE RES USE
  • [4] Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice
    Aubert, J
    Stavridis, MP
    Tweedie, S
    O'Reilly, M
    Vierlinger, K
    Li, M
    Ghazal, P
    Pratt, T
    Mason, JO
    Roy, D
    Smith, A
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 : 11836 - 11841
  • [5] EMBRYONIC STEM-CELLS EXPRESS NEURONAL PROPERTIES IN-VITRO
    BAIN, G
    KITCHENS, D
    YAO, M
    HUETTNER, JE
    GOTTLIEB, DI
    [J]. DEVELOPMENTAL BIOLOGY, 1995, 168 (02) : 342 - 357
  • [6] 3 CLONAL TYPES OF KERATINOCYTE WITH DIFFERENT CAPACITIES FOR MULTIPLICATION
    BARRANDON, Y
    GREEN, H
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (08) : 2302 - 2306
  • [7] Differentiation of mouse embryonic stem cells into a defined neuronal lineage
    Bibel, M
    Richter, J
    Schrenk, K
    Tucker, KL
    Staiger, V
    Korte, M
    Goetz, M
    Barde, YA
    [J]. NATURE NEUROSCIENCE, 2004, 7 (09) : 1003 - 1009
  • [8] Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ES cells
    Billon, N
    Jolicoeur, C
    Ying, QL
    Smith, A
    Raff, M
    [J]. JOURNAL OF CELL SCIENCE, 2002, 115 (18) : 3657 - 3665
  • [9] OPTIMIZED SURVIVAL OF HIPPOCAMPAL-NEURONS IN B27-SUPPLEMENTED NEUROBASAL(TM), A NEW SERUM-FREE MEDIUM COMBINATION
    BREWER, GJ
    TORRICELLI, JR
    EVEGE, EK
    PRICE, PJ
    [J]. JOURNAL OF NEUROSCIENCE RESEARCH, 1993, 35 (05) : 567 - 576
  • [10] In vitro-generated neural precursors participate in mammalian brain development
    Brüstle, O
    Spiro, AC
    Karram, K
    Choudhary, K
    Okabe, S
    McKay, RDG
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) : 14809 - 14814