Protective/suppressive major histocompatibility complex (MHC) class II alleles have been identified in humans and mice where they exert a disease-protective and immunosuppressive effect. Various modes of action have been proposed, among them differential expression of MHC class II. genes in different types of antigen-presenting cells impacting on the T helper type 1 (Th1)-Th2 balance. To test this possibility, the expression of H-2 molecules from the four haplotypes H-2(b), H-2(d), H-2(k), and H-2(q) was determined on bone marrow-derived macrophages (BMDMs) and splenic B. cells. The I-A(b) and I-E-k molecules, both well characterized as protective/suppressive, are expressed at a high level on almost all CD11b(+) BMDMs for 5-8 days, after which expression slowly declines. In contrast, I-A(d), I-A(k), and I-A(q) expression is lower, peaks over a shorter period, and declines more rapidly. No differential expression could be detected on B cells. In addition, the differential MHC class II expression found on macrophages skews the cytokine response of T cells as shown by an in vitro restimulation assay with BMDMs as antigen-presenting cells. The results indicate that macrophages of the protective/suppressive haplotypes express MHC class II molecules at a high level and evert Th1 bias, whereas low-level expression favors a Th2 response. We suggest that the extent of expression of the class II gene gates the back signal from T cells and in this way controls the activity of macrophages. This effect mediated by polymorphic nonexon segments of MHC class II genes may play a role in determining disease susceptibility in humans and mice.