The atmospheric budget of oxidized nitrogen and its role in ozone formation and deposition

被引:83
作者
Fowler, D [1 ]
Flechard, C [1 ]
Skiba, U [1 ]
Coyle, M [1 ]
Cape, JN [1 ]
机构
[1] Inst Terr Ecol, Penicuik EH26 0QB, Midlothian, Scotland
关键词
nitrogen oxides; ozone; soil emissions; dry deposition; wet deposition; stomatal uptake; critical levels;
D O I
10.1046/j.1469-8137.1998.00167.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Emissions of reactive oxidized nitrogen (NO and NO2), collectively known as NOx, from human activities are c. 21 Tg N annually, or 70 % of global total emissions. They occur predominantly in industrialized regions, largely from fossil fuel combustion, but also from increased use of N fertilizers. Soil emissions of NO not only make an important contribution to global totals, but also play a part in regulating the dry deposition of NO and NO2 (NOx) to plant canopies. Soil microbial production of NO leads to a soil 'compensation point' for NO deposition or emission, which depends on soil temperature, N and water status. In warm conditions, the net emission of NOx from plant canopies contributes to the photochemical formation of ozone. Moreover, the effect of NOx emissions from soil is to reduce net rates of NO2 deposition to terrestrial surfaces over large areas. Increasing anthropogenic emissions of NOx have led to an approximate doubling in surface O-3 concentrations since the last century. NOx acts as a catalyst for the production of O-3 from volatile organic compounds (VOCs). Paradoxically, emission controls on motor vehicles might lead to increases in O-3 concentrations in urban areas. Removal of NO and NO2 by dry deposition is regulated to some extent by soil production of NO; the major sink for NO2 is stomatal uptake. Long-term flux measurements over moorland in Scotland show very small deposition rates for NO2 at night and before mid-day of 1-4 ng NO2-N m(-2) s(-1), and similar emission rates during afternoon. The bi-directional flux gives 24-h average deposition velocities of only 1-2 mm s(-1), and implies a long life-time for NOx due to removal by dry deposition. Rates of removal of O-3 at the ground are also influenced by stomatal uptake, but significant non-stomatal uptake occurs at night and in winter. Measurements above moorland showed 40 % of total annual flux was stomatal, with 60% non-stomatal, giving nocturnal and winter deposition velocities of 2-3 mm s(-1) and daytime summer values of 10 mm s(-1). The stomatal uptake is responsible for adverse effects on vegetation. The critical level for O-3 exposure (AOT(40)) is used to derive a threshold O-3 stomatal flux for wheat of 0.5 mu g m(-2) s(-1). Use of modelled stomatal fluxes rather than exposure might give more reliable estimates of yield loss; preliminary calculations suggest that the relative grain yield reduction (%) can be estimated as 38 times the stomatal ozone flux (g m(-2)) above the threshold, summed over the growing season.
引用
收藏
页码:11 / 23
页数:13
相关论文
共 40 条
  • [1] [Anonymous], 1988, ASSESSMENT CROP LOSS
  • [2] [Anonymous], CRITICAL LEVELS OZON
  • [3] Quantifying the fine scale (1kmx1km) exposure, dose and effects of ozone .2. Estimating yield losses for agricultural
    Brown, M
    Cox, R
    Bull, KR
    Dyke, H
    Sanders, G
    Fowler, D
    Smith, R
    Ashmore, MR
    [J]. WATER AIR AND SOIL POLLUTION, 1995, 85 (03) : 1485 - 1490
  • [4] EFFECTS OF SOIL-MOISTURE, TEMPERATURE, AND INORGANIC NITROGEN ON NITRIC-OXIDE EMISSIONS FROM ACIDIC TROPICAL SAVANNA SOILS
    CARDENAS, L
    RONDON, A
    JOHANSSON, C
    SANHUEZA, E
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993, 98 (D8) : 14783 - 14790
  • [5] GLOBAL EMISSIONS OF NITROGEN AND SULFUR-OXIDES FROM 1860 TO 1980
    DIGNON, J
    HAMEED, S
    [J]. JAPCA-THE JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 1989, 39 (02): : 180 - 186
  • [6] THE INTERPRETATION OF MEASUREMENTS OF SURFACE EXCHANGE OF NITROGEN-OXIDES - CORRECTION FOR CHEMICAL-REACTIONS
    DUYZER, JH
    DEINUM, G
    BAAK, J
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1995, 351 (1696): : 231 - 248
  • [7] DUYZER JH, 1993, MODELS METHODS QUANT, P95
  • [8] ERISMAN JW, 1998, IN PRESS ENV MONITOR
  • [9] ERISMAN JW, 1996, 7221010 LIFE EUR RIV
  • [10] GALLOWAY J N, 1990, Proceedings of the Royal Society of Edinburgh Section B (Biological Sciences), V97, P61