Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type

被引:208
作者
Zumft, WG [1 ]
机构
[1] Univ Karlsruhe, Lehrstuhl Mikrobiol, D-76128 Karlsruhe, Germany
关键词
NO reduction mechanisms; heme-copper oxidase superfamily; phylogeny; NO signaling; nor gene regulation;
D O I
10.1016/j.jinorgbio.2004.09.024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The investigation of respiratory N-oxide reduction as part of a biogeochemical process sustained by prokaryotes has roots over a century ago and has laid the groundwork for microbial nitric oxide (NO) biology and recognizing that NO is of bioenergetic importance as an electron acceptor in anaerobic environments. NO is an obligatory respiratory substrate of nitrate- and nitrite-denitrifying prokaryotes that release nitrous oxide or dinitrogen as products. We witness currently a broadening of the scope of NO functionality and an increase in awareness that other heme-based NO-metabolizing systems contribute to the overall capability of the prokaryotic cell to cope with NO both in anaerobic and aerobic environments, including the pathogen-host interface. NO reduction of newly recognized physiological importance is catalyzed by the pentaheme nitrite reductase, cytochrome c', flavohemoglobin and flavorubredoxin. Respiratory NO reductases are heme-nonheme Fe proteins that can be classified either in a short-chain group, which are complexes with cytochrome c, or a long-chain group, which have a fused quinol oxidase domain. Even though NORs are not proton pumps, both reductase groups are structural homologues of heme-copper oxidases. As a unique case, the short-chain NOR of Roseobacter denitrificans acts on oxygen, based on a heme b(3)-Cu-B center. In turn, certain heme-copper oxidases have significant turnover rates with NO. NOR mechanisms have been proposed from oxidase active site chemistry. Besides being a respiratory substrate, NO is also a signaling molecule that triggers gene expression of the principal components of NO respiration by members of the Crp-Fnr superfamily of transcription regulators. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:194 / 215
页数:22
相关论文
共 202 条
[1]   Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans [J].
Adak, S ;
Bilwes, AM ;
Panda, K ;
Hosfield, D ;
Aulak, KS ;
McDonald, JF ;
Tainer, JA ;
Getzoff, ED ;
Crane, BR ;
Stuehr, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (01) :107-112
[2]   Nitric oxide metabolism in Neisseria meningitidis [J].
Anjum, MF ;
Stevanin, TM ;
Read, RC ;
Moir, JWB .
JOURNAL OF BACTERIOLOGY, 2002, 184 (11) :2987-2993
[3]   EXPRESSION OF THE NIR AND NOR GENES FOR DENITRIFICATION OF PSEUDOMONAS-AERUGINOSA REQUIRES A NOVEL CRP/FNR-RELATED TRANSCRIPTIONAL REGULATOR, DNR, IN ADDITION TO ANR [J].
ARAI, H ;
IGARASHI, Y ;
KODAMA, T .
FEBS LETTERS, 1995, 371 (01) :73-76
[4]   THE STRUCTURAL GENES FOR NITRIC-OXIDE REDUCTASE FROM PSEUDOMONAS-AERUGINOSA [J].
ARAI, H ;
IGARASHI, Y ;
KODAMA, T .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 1995, 1261 (02) :279-284
[5]  
Arai H, 1996, MOLECULAR BIOLOGY OF PSEUDOMONADS, P298
[6]   Effect of nitrogen oxides on expression of the nir and nor genes for denitrification in Pseudomonas aeruginosa [J].
Arai, H ;
Kodama, T ;
Igarashi, Y .
FEMS MICROBIOLOGY LETTERS, 1999, 170 (01) :19-24
[7]   The role of the nirQOP genes in energy conservation during anaerobic growth of Pseudomonas aeruginosa [J].
Arai, H ;
Kodama, T ;
Igarashi, Y .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 1998, 62 (10) :1995-1999
[8]   STRUCTURE AND ANR-DEPENDENT TRANSCRIPTION OF THE NIR GENES FOR DENITRIFICATION FROM PSEUDOMONAS-AERUGINOSA [J].
ARAI, H ;
IGARASHI, Y ;
KODAMA, T .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 1994, 58 (07) :1286-1291
[9]   Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase [J].
Arnoux, P ;
Sabaty, M ;
Alric, J ;
Frangioni, B ;
Guigliarelli, B ;
Adriano, JM ;
Pignol, D .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (11) :928-934
[10]   Dissimilatory nitrite and nitric oxide reductases [J].
Averill, BA .
CHEMICAL REVIEWS, 1996, 96 (07) :2951-2964