Nanocrystalline HAp powder was synthesized using surfactant template systems. Composition of the microemulsion and synthesis parameters had significant effect on the formation of HAp nanopowder and their surface area and morphology. Powders were prepared with a surface area of 130 m(2)/g and particle size between 30 and 50 nm with needle shape and spherical morphology. Nanocrystalline hydroxyapatite (HAp) powder was synthesized using the reverse micelle-processing route. Cyclohexane was used as the oil phase, mixed poly(oxyethylene)(5) nonylphenol ether (NP-5) and poly(oxyethylene)(12) nonylphenol ether (NP-12) as the surfactant phase, and a solution of Ca(NO3)(2) and H3PO4 was used as the aqueous phase. The powders were characterized by BET surface area analyzer, powder X-ray diffraction, and transmission electron microscopy. It was found that experimental conditions such as aqueous/organic phase volume ratio, pH, aging time, aging temperature, and metal ion concentration in the aqueous phase affected the crystalline phase, surface area, particle size, and morphology of HAp nanopowders. With the use of this technique, nanopowders were prepared with different morphology depending on the reaction parameters.