On the facets of the mixed-integer knapsack polyhedron

被引:52
作者
Atamtürk, A [1 ]
机构
[1] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA
关键词
mixed-integer programming; knapsack sets; polyhedral theory; lifting;
D O I
10.1007/s10107-003-0400-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the mixed-integer knapsack polyhedron, that is, the convex hull of the mixed-integer set defined by an arbitrary linear inequality and the bounds on the variables. We describe facet-defining inequalities of this polyhedron that can be obtained through sequential lifting of inequalities containing a single integer variable. These inequalities strengthen and/or generalize known inequalities for several special cases. We report computational results on using the inequalities as cutting planes for mixed-integer programming.
引用
收藏
页码:145 / 175
页数:31
相关论文
共 37 条
[1]   On capacitated network design cut-set polyhedra [J].
Atamtürk, A .
MATHEMATICAL PROGRAMMING, 2002, 92 (03) :425-437
[2]   On splittable and unsplittable flow capacitated network design arc-set polyhedra [J].
Atamtürk, A ;
Rajan, D .
MATHEMATICAL PROGRAMMING, 2002, 92 (02) :315-333
[3]  
ATAMTURK A, 2001, SEQUENCE INDEPENDENT
[4]  
Bachem A., 1982, Operations Research Letters, V1, P63, DOI 10.1016/0167-6377(82)90048-7
[5]   FACETS OF KNAPSACK POLYTOPE [J].
BALAS, E .
MATHEMATICAL PROGRAMMING, 1975, 8 (02) :146-164
[6]   FACETS OF KNAPSACK POLYTOPE FROM MINIMAL COVERS [J].
BALAS, E ;
ZEMEL, E .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 34 (01) :119-148
[7]   Gomory cuts revisited [J].
Balas, E ;
Ceria, S ;
Cornuejols, G ;
Natraj, N .
OPERATIONS RESEARCH LETTERS, 1996, 19 (01) :1-9
[8]  
Bienstock D., 1996, INFORMS Journal on Computing, V8, P243, DOI 10.1287/ijoc.8.3.243
[9]  
BIXBY RE, 1998, OPTIMA, V54
[10]  
BROCKMULLER B, 1996, 9647 CORE U CATH LOU