Parallel computational techniques for the analysis of sedimentation velocity experiments in UltraScan

被引:42
作者
Brookes, Emre [2 ]
Demeler, Borries [1 ]
机构
[1] Univ Texas Hlth Sci Ctr San Antonio, Dept Biochem, San Antonio, TX 78249 USA
[2] Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
two-dimensional spectrum analysis; genetic algorithms; Monte Carlo; MPI;
D O I
10.1007/s00396-007-1714-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The advent of parallel computing technology and low-cost computing hardware has facilitated the adoption of high-performance computing tools for the analysis of sedimentation data. Over the past 15 years, we have developed the UltraScan software (Demeler et al., http://ultrascan.uthscsa.edu) to support sedimentation analysis, experimental design, and data management. We describe here recent extensions and advances in methodology that have been adapted in UltraScan. High-performance computing methods implemented on parallel supercomputers utilizing grid computing technology are used to analyze sedimentation experiments at much higher resolution than was previously possible. We discuss the implementation of parallel computing in three novel algorithms used in UltraScan for modeling of sedimentation velocity experiments and provide guidelines for effective data analysis.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 14 条
[1]  
BROOKES E, 2007, IN PRESS P GEN EV CO
[2]  
BROOKES E, 2006, ANAL ULTRACENTRIFUGA, V131, P78
[3]  
BROOKES EH, 2006, SUP 2006 C P ACM IEE
[4]   Sedimentation velocity analysis of highly heterogeneous systems [J].
Demeler, B ;
van Holde, KE .
ANALYTICAL BIOCHEMISTRY, 2004, 335 (02) :279-288
[5]  
DEMELER B, 2007, IN PRESS PROG COLL P
[6]  
Demeler B., 2005, ULTRASCAN COMPREHENS
[7]  
GRAMA A, 2003, INTRO PARALEL COMPUT
[8]  
Hall M. W., 1996, MAXIMIZING MULTIPROC
[9]  
HOLLAND JH, 1992, ADAPTATION NATURAL A
[10]  
Lamm O., 1929, ARK MAT ASTRON FYS, V21, P1