Origin of the Eumetazoa: Testing ecological predictions of molecular clocks against the Proterozoic fossil record

被引:214
作者
Peterson, KJ
Butterfield, NJ [1 ]
机构
[1] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA
[2] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
关键词
Porifera; acritarchs; Ediacaran; coevolution;
D O I
10.1073/pnas.0503660102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Molecular clocks have the potential to shed light on the timing of early metazoan divergences, but differing algorithms and calibration points yield conspicuously discordant results. We argue here that competing molecular clock hypotheses should be testable in the fossil record, on the principle that fundamentally new grades of animal organization will have ecosystem-wide impacts. Using a set of seven nuclear-encoded protein sequences, we demonstrate the paraphyly of Porifera and calculate sponge/eumetazoan and cnidarian/bilaterian divergence times by using both distance [minimum evolution (ME)] and maximum likelihood (ML) molecular clocks; ME brackets the appearance of Eumetazoa between 634 and 604 Ma, whereas ML suggests it was between 867 and 748 Ma. Significantly, the ME, but not the ML, estimate is coincident with a major regime change in the Proterozoic acritarch record, including: (i) disappearance of low-diversity, evolutionarily static, pre-Ediacaran acanthomorphs; (h) radiation of the high-diversity, short-lived Doushantuo-Pertatataka microbiota; and (iii) an order-of-magnitude increase in evolutionary turnover rate. We interpret this turnover as a consequence of the novel ecological challenges accompanying the evolution of the eumetazoan nervous system and gut. Thus, the more readily preserved microfossil record provides positive evidence for the absence of pre-Ediacaran eumetazoans and strongly supports the veracity, and therefore more general application, of the ME molecular clock.
引用
收藏
页码:9547 / 9552
页数:6
相关论文
共 64 条
[1]  
Adams Christi L., 1999, Memoirs of the Queensland Museum, V44, P33
[2]  
[Anonymous], 1999, CONTINENTAL DYNAMICS
[3]  
Blair JE, 2005, MOL BIOL EVOL, V22, P387, DOI 10.1093/molbev/msi039
[4]  
Bowring S., 2003, GEOPH RES ABSTR, V5, P13219
[5]   Testing the Cambrian explosion hypothesis by using a molecular dating technique [J].
Bromham, L ;
Rambaut, A ;
Fortey, R ;
Cooper, A ;
Penny, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (21) :12386-12389
[6]  
Butterfield NJ, 2005, PALEOBIOLOGY, V31, P165, DOI 10.1666/0094-8373(2005)031<0165:PPF>2.0.CO
[7]  
2
[8]   Exceptional fossil preservation and the Cambrian explosion [J].
Butterfield, NJ .
INTEGRATIVE AND COMPARATIVE BIOLOGY, 2003, 43 (01) :166-177
[9]  
Butterfield NJ, 2004, PALEOBIOLOGY, V30, P231, DOI 10.1666/0094-8373(2004)030<0231:AVAFTM>2.0.CO
[10]  
2