Carbon and nitrogen assimilation in deep subseafloor microbial cells

被引:142
作者
Morono, Yuki [1 ]
Terada, Takeshi [2 ]
Nishizawa, Manabu [3 ]
Ito, Motoo [1 ]
Hillion, Francois [4 ]
Takahata, Naoto [5 ]
Sano, Yuji
Inagaki, Fumio [1 ]
机构
[1] Japan Agcy Earth Marine Sci & Technol JAMSTEC, Kochi Inst Core Sample Res, Nanko Ku, Kochi 7838502, Japan
[2] Marine Works Japan LTD, Dept Ocean Drilling Sci Tech Support, Yokohama, Kanagawa 2360042, Japan
[3] Japan Agcy Earth Marine Sci & Technol JAMSTEC, Precambrian Ecosyst Lab, Yokosuka, Kanagawa 2370061, Japan
[4] CAMECA Simplified Anonymous Soc, F-92622 Gennevilliers, France
[5] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba 2778564, Japan
基金
日本学术振兴会;
关键词
subseafloor life; metabolic activity; carbon and nitrogen fixation; marine sedimentary habitat; MARINE SUBSURFACE SEDIMENTS; IN-SITU HYBRIDIZATION; SEA-FLOOR BIOSPHERE; PERU MARGIN; BACTERIA; LIFE; COMMUNITIES; ARCHAEA; METHANE; PROKARYOTES;
D O I
10.1073/pnas.1107763108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Remarkable numbers of microbial cells have been observed in global shallow to deep subseafloor sediments. Accumulating evidence indicates that deep and ancient sediments harbor living microbial life, where the flux of nutrients and energy are extremely low. However, their physiology and energy requirements remain largely unknown. We used stable isotope tracer incubation and nanometer-scale secondary ion MS to investigate the dynamics of carbon and nitrogen assimilation activities in individual microbial cells from 219-m-deep lower Pleistocene (460,000 y old) sediments from the northwestern Pacific off the Shimokita Peninsula of Japan. Sediment samples were incubated in vitro with (13)C- and/or (15)N-labeled glucose, pyruvate, acetate, bicarbonate, methane, ammonium, and amino acids. Significant incorporation of (13)C and/or (15)N and growth occurred in response to glucose, pyruvate, and amino acids (similar to 76% of total cells), whereas acetate and bicarbonate were incorporated without fostering growth. Among those substrates, a maximum substrate assimilation rate was observed at 67 x 10(-18) mol/cell per d with bicarbonate. Neither carbon assimilation nor growth was evident in response to methane. The atomic ratios between nitrogen incorporated from ammonium and the total cellular nitrogen consistently exceeded the ratios of carbon, suggesting that subseafloor microbes preferentially require nitrogen assimilation for the recovery in vitro. Our results showed that the most deeply buried subseafloor sedimentary microbes maintain potentials for metabolic activities and that growth is generally limited by energy but not by the availability of C and N compounds.
引用
收藏
页码:18295 / 18300
页数:6
相关论文
共 40 条
[1]  
AOIKE K, 2007, CK06 06 D V CHIKYU S, P40
[2]   Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment [J].
Biddle, Jennifer F. ;
Fitz-Gibbon, Sorel ;
Schuster, Stephan C. ;
Brenchley, Jean E. ;
House, Christopher H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (30) :10583-10588
[3]   Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru [J].
Biddle, JF ;
Lipp, JS ;
Lever, MA ;
Lloyd, KG ;
Sorensen, KB ;
Anderson, R ;
Fredricks, HF ;
Elvert, M ;
Kelly, TJ ;
Schrag, DP ;
Sogin, ML ;
Brenchley, JE ;
Teske, A ;
House, CH ;
Hinrichs, KU .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (10) :3846-3851
[4]   Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia margin [J].
Colwell, F. S. ;
Boyd, S. ;
Delwiche, M. E. ;
Reed, D. W. ;
Phelps, T. J. ;
Newby, D. T. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (11) :3444-3452
[5]   Distributions of microbial activities in deep subseafloor sediments [J].
D'Hondt, S ;
Jorgensen, BB ;
Miller, DJ ;
Batzke, A ;
Blake, R ;
Cragg, BA ;
Cypionka, H ;
Dickens, GR ;
Ferdelman, T ;
Hinrichs, KU ;
Holm, NG ;
Mitterer, R ;
Spivack, A ;
Wang, GZ ;
Bekins, B ;
Engelen, B ;
Ford, K ;
Gettemy, G ;
Rutherford, SD ;
Sass, H ;
Skilbeck, CG ;
Aiello, IW ;
Guèrin, G ;
House, CH ;
Inagaki, F ;
Meister, P ;
Naehr, T ;
Niitsuma, S ;
Parkes, RJ ;
Schippers, A ;
Smith, DC ;
Teske, A ;
Wiegel, J ;
Padilla, CN ;
Acosta, JLS .
SCIENCE, 2004, 306 (5705) :2216-2221
[6]   Metabolic activity of subsurface life in deep-sea sediments [J].
D'Hondt, S ;
Rutherford, S ;
Spivack, AJ .
SCIENCE, 2002, 295 (5562) :2067-2070
[7]   Subseafloor sedimentary life in the South Pacific Gyre [J].
D'Hondt, Steven ;
Spivack, Arthur J. ;
Pockalny, Robert ;
Ferdelman, Timothy G. ;
Fischer, Jan P. ;
Kallmeyer, Jens ;
Abrams, Lewis J. ;
Smith, David C. ;
Graham, Dennis ;
Hasiuk, Franciszek ;
Schrum, Heather ;
Stancin, Andrea M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (28) :11651-11656
[8]   Dehalogenation Activities and Distribution of Reductive Dehalogenase Homologous Genes in Marine Subsurface Sediments [J].
Futagami, Taiki ;
Morono, Yuki ;
Terada, Takeshi ;
Kaksonen, Anna H. ;
Inagaki, Fumio .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (21) :6905-6909
[9]   Biological energy requirements as quantitative boundary conditions for life in the subsurface [J].
Hoehler, T. M. .
GEOBIOLOGY, 2004, 2 (04) :205-215
[10]   Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor [J].
Imachi, Hiroyuki ;
Aoi, Ken ;
Tasumi, Eiji ;
Saito, Yumi ;
Yamanaka, Yuko ;
Saito, Yayoi ;
Yamaguchi, Takashi ;
Tomaru, Hitoshi ;
Takeuchi, Rika ;
Morono, Yuki ;
Inagaki, Fumio ;
Takai, Ken .
ISME JOURNAL, 2011, 5 (12) :1913-1925