The complexity of the logistic map at the chaos threshold

被引:10
作者
Montangero, S
Fronzoni, L
Girgolini, P
机构
[1] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[2] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[3] Ist Biofis CNR, Area Ric Pisa, I-56010 Pisa, Italy
[4] Univ N Texas, Ctr Nonlinear Sci, Denton, TX 76203 USA
关键词
D O I
10.1016/S0375-9601(01)00332-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply a generalized version of the Kolmogorov-Sinai entropy, based on a non-extensive form, to analyzing the dynamics of the logistic map at the chaotic threshold, the paradigm of power-law sensitivity to initial conditions. We make the statistical averages on the distribution of the power indexes beta, and we show that the resulting entropy time evolution becomes a linear function of time if we assign to the non-extensive index q the value Q < 1 prescribed by the heuristic arguments of earlier work. We also show that the emerging entropy index Q is determined by the asymptotic mean value of the index beta, and that this same mean value determines the strength of the logarithmic time increase of entropy, stemming from the adoption of the ordinary Shannon form. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:81 / 87
页数:7
相关论文
共 21 条
[1]   DYNAMICAL BEHAVIOR AT THE ONSET OF CHAOS [J].
ANANIA, G ;
POLITI, A .
EUROPHYSICS LETTERS, 1988, 7 (02) :119-124
[2]  
ARGENTI F, IN PRESS CHAOS SOLIT
[3]  
Beck C., 1993, THERMODYNAMICS CHAOT
[4]  
BONANNO C, UNPUB NONLINEARITY
[5]   A non extensive approach to the entropy of symbolic sequences [J].
Buiatti, M ;
Grigolini, P ;
Palatella, L .
PHYSICA A, 1999, 268 (1-2) :214-224
[6]   Dynamic approach to the thermodynamics of superdiffusion [J].
Buiatti, M ;
Grigolini, P ;
Montagnini, A .
PHYSICAL REVIEW LETTERS, 1999, 82 (17) :3383-3387
[7]  
CORNFELD JP, 1982, ERGODIC THEORY
[8]   Power-law sensitivity to initial conditions within a logisticlike family of maps: Fractality and nonextensivity [J].
Costa, UMS ;
Lyra, ML ;
Plastino, AR ;
Tsallis, C .
PHYSICAL REVIEW E, 1997, 56 (01) :245-250
[9]  
Dorfman J. R., 1999, INTRO CHAOS NONEQUIL
[10]  
Ellis R., 2006, ENTROPY LARGE DEVIAT