Iteratively solving linear inverse problems under general convex constraints

被引:96
作者
Daubechies, Ingrid [1 ]
Teschke, Gerd [2 ]
Vese, Luminita [3 ]
机构
[1] Princeton Univ, PACM, Princeton, NJ 08544 USA
[2] Konrad Zuse Inst Berlin, D-14195 Berlin, Germany
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
l i n e a r i n v e r s e p r o b l e m s; L a n d w e b e r i t e r a t i o n; B e s o v; a n d BV r e s t o r a t; i o n; G e n e r a l i z e d s h r i n k a g e;
D O I
10.3934/ipi.2007.1.29
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider linear inverse problems where the solution is assumed to fulfill some general homogeneous convex constraint. We develop an algorithm that amounts to a projected Landweber iteration and that provides and iterative approach to the solution of this inverse problem. For relatively moderate assumptions on the constraint we can always prove weak convergence of the iterative scheme. In certain cases, i.e. for special families of convex constraints, weak convergence implies norm convergence. The presented approach covers a wide range of problems, e.g. Besov- or BV restoration for which we present also numerical experiments in the context of image processing.
引用
收藏
页码:29 / 46
页数:18
相关论文
共 22 条
[1]   Modeling very oscillating signals. Application to image processing [J].
Aubert, G ;
Aujol, JF .
APPLIED MATHEMATICS AND OPTIMIZATION, 2005, 51 (02) :163-182
[2]   A variational method in image recovery [J].
Aubert, G ;
Vese, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1948-1979
[3]  
Boyd S., 2005, Convex Optimization
[4]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188
[5]  
Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
[6]   Signal recovery by proximal forward-backward splitting [J].
Combettes, PL ;
Wajs, VR .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1168-1200
[7]  
Daubechies I., 2004, Proceedings of the SPIE - The International Society for Optical Engineering, V5266, P94, DOI 10.1117/12.516051
[8]   Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising [J].
Daubechies, I ;
Teschke, G .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (01) :1-16
[9]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[10]   CONVEX-FUNCTIONS OF A MEASURE AND APPLICATIONS [J].
DEMENGEL, F ;
TEMAM, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (05) :673-709